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Abstract 
 
Biogas production is a complex process depending on many factors and is an area that is being 
researched intensively. This thesis is based on studies that were aimed at optimizing the biogas 
production process by: 

• Reducing the time taken to assess the biochemical methane potentials (BMP) of substrates 
(specifically meadow grasses) by rapid analytical methods such as near infra-red 
spectroscopy (NIRS), in-vitro organic matter digestibility assay and the neutral detergent 
fibre assay 
 

• Applying NIRS as a monitoring tool to assess the concentrations of ammonia (which is 
inhibitory to the process) in the contents of anaerobic digesters.  
 

• Improving the BMP of materials such as cattle manure and dewatered pig manure and 
chicken manure by thermal pre-treatment at various temperatures between 100°C and 
225°C  

Results show that the NIRS method can be used to discriminate between meadow grasses with 
high or low BMP. In detecting the ammonia content, NIRS was shown to have the potential to be a 
process monitoring tool. Thermal pre-treatment proved to be most effective on dewatered pig 
manure which showed improvements at lower pre-treatment temperatures. Cattle manure 
required pre-treatment temperatures higher than 175°C to show improvement. Chicken manure 
did not show any improvements but instead showed a decrease in BMP at 225°C. 
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Summary 

Biogas production is fast gaining importance as a source of renewable energy apart from 

being a waste management solution. There are several areas in the biogas production 

process that need optimization and research, and this PhD study focused on the following 

areas. 

1. The application of near infrared spectroscopy (NIRS) in the anaerobic digestion 

process 

2. Pre-treatment of substrates to improve their methane yields. 

The amount of methane that can be obtained from a particular substrate is usually 

measured by the biochemical methane potential assay (BMP) which requires at least 30 

days. NIRS along with two forage analysis techniques, the in-vitro organic matter 

digestibility assay (IVOMD) and the neutral detergent fibre assay (NDF) were tested as 

methods that could be used to predict the BMP of meadow grasses in much less time. The 

NIRS method was most successful as a rapid and indirect method of predicting the BMP 

when compared to the other two methods. The NIRS method required the use of partial 

least squares regression, a multivariate data analysis approach, to build models that 

related the spectral data from the NIRS to the BMPs of the meadow grasses. The model 

based on NIRS had an R2 value of 0.69 and a residual prediction deviation (RPD) of 1.75, 

which makes it a moderately useful model that can discriminate between high and low 

values of BMP for meadow grasses. 

Another study where NIRS was applied to the anaerobic digestion process was to monitor 

the total ammonia nitrogen contents (TAN) of an anaerobic digester. Ammonia is a known 

inhibitor and beyond certain levels, can seriously affect the anaerobic digestion process. It 

is currently measured mainly by chemical analysis. The use of NIRS to measure the 

ammonia contents would reduce the time and the chemicals required for laboratory 

analysis and make real time monitoring possible. A diffuse reflectance probe attached to an 

NIR spectrometer was used to measure the TAN contents in the digestates of anaerobic 

digesters that used cattle manure as substrate. Partial least squares regression and interval 

partial least squares methods were used to build models of spectral data predicting the 

TAN concentrations. An R2 of 0.91 and an RPD of 3.4 was obtained implying that the probe 

could be used for monitoring and screening purposes. 

The second focus of this PhD study was to use pre-treatment methods to improve the BMP 

of substrates. Three types of manure, cattle manure, dewatered pig manure and chicken 

manure were subjected to thermal pre-treatment and the changes in their BMP were 

studied. The manures were pre-treated in a high temperature and pressure reactor for 15 

minutes, at six temperatures between 100°C and 225°C with 25°C intervals to study the 

effect on their methane yield. After 27 days of anaerobic digestion, the dewatered pig 

manure showed improvements at much lower pre-treatment temperatures when compared 
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to the other two manures. All temperatures above 125°C improved the BMP of the pig 

manure with a maximum 29 % increase in yield at 200°C. Cattle manure showed a 

significant improvement in its BMP at temperatures above 175°C with the best result of a 

21 % increase at 200°C. The BMP in chicken manure was reduced by 18 % at 225°C, but at 

lower pre-treatment temperatures there were no significant changes.  
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Summary in Danish 

Biogas som en kilde til produktion af  vedvarende energi vinder hurtigt frem da det udover 

at producere energi også giver en række miljøfordele og er en miljøvenlig metode til 

affaldshåndtering. Der er imidlertid flere områder, der kræver optimering før teknologien 

er fuldt udviklet og denne ph.d undersøgelse har fokus på en række områder der kan 

optimere teknologien herunder: 

Anvendelse af nær-infrarød spektroskopi (NIRS) til process optimering og biogas udbytte 

måling 

Forbehandling af substrater for at forbedre methan udbyttet. 

Mængden af methan, der kan opnås fra et substrat måles normalt ved biokemiske metan 

assays (BMP), der tager mindst 30 dage. NIRS sammen med to foder analyseteknikker (in 

vitro-organisk stof  (IVOS) og neutral detergent fiber (NDF) er blevet afprøvet som metode 

til at forudsige BMP af vedvarende græs. NIRS metoden var den bedste og hurtigste 

metode til forudsigelse af BMP i forhold til de to andre fremgangsmåder. NIRS metoden 

kræver anvendelse af mindste kvadraters regression og en multivariat dataanalyse tilgang 

til lave modeller, der vedrører de spektrale data fra NIRS til BMP af engen græss. Modellen 

baseret på NIRS havde en R2 værdi på 0,69 og afvigelse (RPD) på 1,75, svarende til en 

anvednelig model som kan skelne mellem høje og lave værdier af BMP i eng græsser. 

I en anden undersøgelse blev NIRS anvendt til at overvåge det samlede ammoniak indhold 

(TAN) i en anaerob udrådnings processen. Ammoniak er en kendt inhibitor, og kan  

påvirke den anaerobe nedbrydningsproces negativt hvis niveauet kommer over bestemte 

niveauer. I øjebliket måles ammoniak ved kemisk analyse der er tids- og 

omkostningskrævende. Anvendelsen af NIRS til at måle ammoniak indholdet vil reducere 

den tid og de kemikalier, der kræves til laboratorieanalyse og gøre real time overvågning 

muligt. En diffus reflektans probe forbundet til en NIR spektrometer blev anvendt til at 

måle TAN indholdet i biogas reaktorer med kvæggødning substrat. En R2 på 0,91 og en 

RPD på 3,4 blev opnået som indebærer, at proben er anvendelig til overvågnings- og 

screening formål. 

Det andet fokusområde forbehandling metoder til forbedring af BMP værdien for 

forskellige substrater. Tre typer af husdyrgødning, kvæggylle, afvandet svinegylle og 

hønsegødning blev udsat for termisk forbehandling og ændringer i BMP blev undersøgt. 

Husdyrgødningen blev forbehandlet i en høj temperatur og tryk reaktor i 15 minutter ved 

seks temperaturer fra 100°C - 225°C med 25°C intervaller og efterfølgende blev virkningen 

på deres methan udbytte undersøgt. Efter 27 dages anaerob udrådning var der positiv 

effekt på afvandet svinegødning  ved lavere forbehandlings temperaturer sammenlignet 

med de to andre gødningstyper. Alle temperaturer over 125 ° C forbedrede BMP af 

svinegylle med en maksimal stigning på 29% i udbytte ved 200°C. Kvæggylle viste en 

signifikant forbedring i BMP ved temperaturer over 175°C med det bedste resultat på 21% 
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forbedring ved 200°C. BMP i hønsegødning blev reduceret med 18% ved 225 ° C, men ved 

lavere temperaturer var der ingen signifikante effekter. 
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Glossary 

AD Anaerobic digestion 

BMP Biochemical methane potential 

CSTR Continuous stirred tank reactor 

DM Dry matter 

EMSC Extended multiplicative scatter correction 

FT-NIR Fourier transform near infrared spectroscopy 

HRT Hydraulic retention time 

InAs Indium Arsenide 

InGaAs Indium Gallium Arsenide 

IVOMD In-vitro organic matter digestibility test 

LFA Long chain fatty acids 

LV Latent variables 

NDF Neutral detergent fibre 

NIR Near infrared  

NIRS Near infrared spectroscopy 

MSC Multiplicative scatter correction 

OLR Organic loading rate 

PCA Principal component analysis 

PC Principal component 

PC/MR Principal component regression 

PLS Partial least squares 

PLSR Partial least squares regression 

R2 Coefficient of determination 

RMSECV Root mean square error of cross validation 

RMSEP Root mean square error of prediction 
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RPD Residual prediction deviation/ ratio of standard deviation to standard error of 

performance  

RPM Rotations per minute 

SD Standard deviation 

SNV Standard normal variate 

TAN Total ammonia nitrogen 

VFA Volatile fatty acids 

VS Volatile solids 
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Chapter 1 - Introduction 

1.1 Biogas as a renewable energy source 

Anaerobic digestion (AD) is a biological process where organic matter is degraded into its 

most reduced form (methane) and its most oxidized form (carbon dioxide) without 

external electron acceptors such as oxygen, nitrates or sulphates (1, 2). The process occurs 

in nature and is one of the natural degradation pathways for organic matter. The main 

gaseous products of anaerobic digestion are methane and carbon dioxide, and minor 

quantities (< 1%) of hydrogen sulphide, nitrogen oxides, ammonia and other volatile 

compounds (1). Although there has been evidence of the use of biogas for heating in the 

10th century BC, the first anaerobic digesters appeared in the mid 19th century. The initial 

use of digesters was mainly for sewage treatment. It was then extended to handle animal 

manure, municipal solid wastes and wastes from industries such as food, pharmaceutical 

and chemical industries. The energy crisis in the 1970’s led to a significant growth in 

research in this area as there was an impetus to reduce the dependency on fossil fuels (3, 

4). More recently, AD is being considered as a potential renewable energy source and not 

just as a waste treatment solution.  

AD is a viable solution to some of the problems that the world is facing today and to those 

that are expected to arise in the near future. The world population is increasing and is 

expected to reach nine billion by the year 2040 and as a consequence the energy demand is 

expected to rise by 30% (5). Currently about 81% of the worlds energy demand is met by 

fossil fuels (6). The amount of fossil fuels available is limited and the use of fossil fuels is 

one of the main causes for anthropogenic greenhouse gas emissions. Greenhouse gases, as 

their name suggests, trap heat on to the earth’s surface increasing the average global 

temperature, leading to serious environmental impacts such as the melting of the polar ice-

caps, severe weather fluctuations, increased frequency of droughts and acidification of 

oceans to name a few (7). Energy production using fossil fuels is responsible for about  57% 

of the total greenhouse gas emissions (8). Biogas is a carbon dioxide (CO2) neutral source 

of energy, in other words it uses the carbon that is already available in the existing carbon 

cycle and does not add to it and is hence a good substitute for fossil fuels.  

Population growth will also lead to an increase in the amount of waste generated. Biogas 

produced from AD of wastes such as municipal solid wastes, agricultural residues and 

wastewater sludge, generates energy while reducing the volume of the waste. It also 

harnesses the methane emissions associated with the wastes; for example landfill 

emissions and emissions from manure storage. Methane is a potent greenhouse gas. It has 

a high greenhouse gas potential and is 21 times more effective (over a 100 year period) at 

trapping heat than carbon dioxide (9). 50% of the methane emissions on earth are by 

human activities such as livestock production, manure management, coal mining, landfills 

and rice production among others (10). AD of wastes that might have caused emissions in 
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landfills and from manure storage will reduce the amount of methane emitted to the 

atmosphere. In other words, the methane emissions from landfills and manure storage can 

be reduced considerably by using their organic fractions to produce methane under 

controlled conditions, and then collecting and utilizing the methane, effectively reducing 

the impact.  

Compared to other renewable energy sources AD has certain advantages and 

disadvantages. Almost any organic matter can be degraded (to various extents depending 

on the substrate properties) to produce biogas. It can thus utilize agricultural residues such 

as crop residues and manure, and does not have to compete for land used for food 

production. If energy crops are being used, biogas production uses the entire plant instead 

of specific plant parts, like grain in the case of first generation bioethanol (11). The AD 

process does not need pure microbial cultures (12) it has a multitude of microorganisms 

working together and these microorganisms can be supplied as an initial inoculum or can 

be found in the feedstock in manure substrates and will find a steady population if the 

substrate input remains constant. As long as the substrate supply and the process is steady, 

the production of biogas can be maintained at a steady rate, this is an advantage when 

compared to renewable energy sources such as wind energy and solar energy that depend 

on weather conditions. The digestate (the material remaining after AD) is nutrient rich; the 

total nitrogen and phosphorous nutrient content remains the same in the digestate as in 

the original biomass as the only significant elements removed are carbon, hydrogen and 

oxygen in the form of biogas (13). Another advantage of the biogas process is that no 

product separation is required; methane has very low solubility in water and readily 

separates and collects in the headspace of the digester (12). Increase in bacterial biomass is 

much lower in anaerobic digestion when compared to the amount of sludge produced by 

aerobic  or anoxic processes, as the amount of energy that the microbes gain in the 

anaerobic process is much lower in comparison (2, 13).   

However, a major issue with anaerobic systems is process instability, usually caused by 

inhibition, feed overload, inadequate temperature control or washout of biomass (14, 15). 

Some of the features that make AD an attractive option are also responsible for a lot of 

issues that need attention. For example, it is an advantage to have multiple groups of 

microbes working together, but a disturbance in the synergy between the groups could lead 

to process failure. Currently, a lot of research is being focussed at making the process more 

reliable and efficient.  

The following sub-sections will give an outline of the basics behind the anaerobic process 

followed by the factors that affect the biogas production and then a short paragraph on 

substrates for the production of biogas, which all lead to the topics that were investigated 

as part of this PhD study. 
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1.2 The anaerobic process 

The production of biogas from the anaerobic decomposition of organic material takes place 

in multiple stages: hydrolysis, acidogenesis and acetogenesis and finally methanogenesis. 

The two products of anaerobic digestion are biogas and the digestate. The process has one 

extracellular step (hydrolysis) and three intra-cellular steps - acidogenesis, acetogenesis 

and methanogenesis (16). These steps are carried out by different groups of 

microorganisms: the fermentative bacteria (hydrolytic and acidogenic), the anaerobic 

oxidising (syntrophic and acetogenic) bacteria and the methanogenic archaea (17). Figure 

1.1 shows a flow chart of the anaerobic conversion process.  

Hydrolysis:   

The hydrolysis step is extracellular and is brought about by various fermentative bacteria. 

Hydrolysis in anaerobic terms is the solubilization of solids and is accomplished via 

extracellular enzymes secreted by the bacteria. Three mechanisms have been proposed for 

the enzymatic hydrolysis processes occurring in the AD process. One mechanism suggests 

that the microbes secrete the enzymes to the bulk liquid which then adsorb onto a particle 

and react (1). Another mechanism suggests that the microbes attach themselves to the 

particle and release enzymes into the vicinity of the particle (1, 18). The third mechanism 

also suggests that the organism attaches itself to the surface of the particle, but in this case 

the enzyme is also attached to the organism and apart from its enzymatic functions it also 

acts as a transport receptor of the hydrolysis product to the interior of the cell (1). Enzymes 

such as proteases (from proteolytic bacteria) solubilize proteins while lipases (from 

lipolytic bacteria) breakdown lipids and cellulases and xylanases (cellulytic and xylanolytic 

bacteria) solubilize complex carbohydrates, into simpler compounds and monomers (2). In 

case of lignocellulosic substrates that are difficult to degrade or particulate substrates, 

hydrolysis is the rate limiting step (18). The products of hydrolysis are simple sugars, 

amino acids and long chain fatty acids-LCFA (organic acids with more than 5 carbon 

atoms) (1, 3). 

Acidogenesis and Acetogenesis: 

In acidogenesis, the sugars and amino acids from the hydrolysis step are converted into 

alcohols and organic acids by fermentative acidogens releasing carbon dioxide. In 

acetogenesis, the products from acidogenesis such as volatile fatty acids (VFA) and 

alcohols and the remaining products of the hydrolysis (for example- LCFAs) are oxidised 

by the acetogens into hydrogen and acetic acid (2). The products of these steps are acetic 

acid, hydrogen and carbon dioxide. The acetogenic bacteria have a symbiotic relationship 

with the methanogens. The production of acetate results in the release of hydrogen, and 
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acetogens which are obligate hydrogen producers cannot function at a hydrogen partial 

pressure above 10-4 atmospheres (19). Methanogens utilize the hydrogen to produce 

methane and keep the partial pressure of hydrogen low enough for the acetogens to 

function. Two other processes can take place when two distinct groups of microbes, the 

homoacetogens and the acetic acid oxidisers are present (20, 21). These two groups of 

microbes cause the inter-conversion of acetate to hydrogen and carbon dioxide (syntrophic 

acetate oxidation) and the conversion of hydrogen and carbon dioxide to acetate 

(homoacetogenesis) (21).  

Methanogenesis: 

Methanogens belong to the domain archaea and are obligate anaerobes (17). The products 

of the acidogenesis and acetogenesis step form the substrates for the methanogenesis 

stage. Acetic acid (CH3COOH), carbon dioxide and hydrogen are the main precursors used 

by methanogens, however, carbon monoxide (CO), formate (HCOOH), methanol (CH3OH) 

and methylamine (CH3NH2) can also be used to form methane. Methane production is 

brought about mainly by two pathways, aceticlastic methanogenesis and hydrogenotrophic 

methanogenesis. The acetate is cleaved by aceticlastic methanogens to produce methane 

and carbon dioxide (Equation 1) while the carbon dioxide is reduced by the 

hydrogenotrophs to methane (Equation 2).   

Aceticlastic methanogenesis: CH3COO- + H+ --> CH4 + CO2 Equation 1 (17) 

Hydrogenotrophic methanogenesis: 4H2 + CO2  --> CH4 + 2H2O Equation 2 (17) 

Methane production using hydrogen results in more energy gain when compared to 

aceticlastic methanogenesis; however the limited supply of hydrogen in the anaerobic 

digester leads to the dominance of the aceticlastic pathway (19). Hence, 70% of the 

methane output is produced using acetate as the precursor and 30% is by the use of 

hydrogen and carbon dioxide (17, 19)   
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 Figure 1.1: Methane production from organic substrates. Adapted from (2) 
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1.3 Factors affecting biogas production: 

From the previous section it can be seen that anaerobic digestion is a complex process and 

requires the synergistic efforts of various microorganisms in various steps where the 

products of one step are utilized in the next one finally culminating in the production of 

biogas. A disturbance in one of the steps will therefore affect the entire process, and there 

are numerous factors that affect the process.  

Parameters such as organic loading rates, temperature, pH, concentrations of nutrients 

and inhibitors such as ammonia and hydrogen sulphide are critical to the functioning of 

the AD process. Table 1.1 shows some of the parametric levels that must be maintained in 

digesters for optimal performance and the levels beyond which they are detrimental to the 

AD process.  

The effect of these parameters are different on different microbial groups as each microbial 

group has different physiological and nutritional needs and different growth rates and it is 

imbalances between them that causes process instability (22). An imbalance in the process 

caused due to a disturbance in the hydrolysis stage will limit the activities in the 

consequent stages reducing the biogas production (19). A disturbance in the last stage that 

is the methanogenesis stage will bring about an accumulation of acids that have been 

formed in the previous stages (19). Changes in the process such as reduced biogas 

production, accumulation of VFAs, decrease in pH and alkalinity, increased concentrations 

of carbon dioxide are indicators of process instability (19).  

Table 1.1: Factors affecting anaerobic processes. 

Parameter Optimal levels  Detrimental levels 

pH 6 to7 for methanogens and 
acetogens 
6 for acidogens (4) 

<6 and >8.5 (4)  

Temperature 30°C to 35°C for mesophilic 
reactors (19) 
50°C to 60°C for thermophilic 
reactors (19)  
 

Fluctuation > ± 2°C/day to 
3°C/day (19)  
Fluctuation > ± 1°C / day 
(15, 19)  

Organic loading rate Depends on the composition of 
the substrate 

> + 50% dissolved COD/day 
(15) 

Free ammonia < 0.2 g N/L (22) 1.7 to 14 gN/L (22) (Depends 
on the degree of 
acclimatization) 

 

Changes in pH and changes in gas production or in gas composition are usually slow and 

while they can indicate gradual changes, they cannot be used to detect sudden changes in 

the process (23). Process instabilities lead to an accumulation of VFA which should lead to 

a corresponding drop in the pH. But in case of wastes that have a large buffer capacity; 
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manure for example, the pH change is noticeable only after the VFA concentration is very 

high. Thus, although pH is an easy parameter to measure and can easily be applied to 

online monitoring of reactors, it cannot be solely relied upon to monitor inhibition. On the 

other hand, VFA, which by itself in high concentrations is inhibitory to methanogens, can 

also be used as a process indicator (23). Some studies have suggested the use of individual 

volatile fatty acids such as propionic acid, acetic acid, butyric acid, iso-butyric acid or iso-

valeric acid, as process indicators (24, 25). There is, however, no consensus on a general 

level of VFA that is inhibitory as the level depends on various factors, but unexpected 

increases in VFA could be seen as a sign of process imbalance that could possibly lead to 

process failure if the anaerobic process does not adapt to the new levels (26, 27). 

Among a number of compounds that are toxic to the anaerobic microbes, ammonia is the 

most common inhibitor (4). However, ammonia concentrations below 200 mg/L  are 

favourable for anaerobic microbes as it is an essential nutrient (22). Ammonia is present in 

the form of the ammonium ion (NH4
+) and free ammonia (NH3), of which the free 

ammonia (FA) is suspected to be the main cause for inhibition as it is membrane 

permeable and can diffuse into the microbial cells (22). Of all the microbes that are part of 

the anaerobic process, the methanogens are least tolerant to ammonia inhibition (22). The 

ammonium ion and FA exist in equilibrium, and the equilibrium depends on the 

temperature and pH. Increases in pH lead to an increase in concentration of FA (28). 

Anaerobic digesters are operated typically at mesophilic (20°C to 45°C) or thermophilic 

(45°C to 60°C) temperatures; those operated at temperatures below 20°C and are called 

psychrophilic reactors (29). Higher operating temperatures usually result in higher 

degradation rates and higher microbial growth rates, but also make the process more 

unstable and susceptible to ammonia inhibition (1, 4, 28). The increase in the FA 

concentration along with temperature makes thermophilic reactors more susceptible to 

ammonia inhibition compared to mesophilic reactors.  

The organic loading rate (OLR) is the substrate input rate per unit volume of the reactor in 

terms of its organic content. The OLR is taken into consideration when deciding on the 

hydraulic retention time (HRT) of a reactor (27). In other words, each reactor with a 

particular HRT is designed to handle a certain organic load. Overloading will cause an 

initial increase followed by a decrease in biogas production and the accumulation of VFAs 

which if severe enough can inhibit the methanogens (27). Currently, feeding strategies in 

full scale anaerobic digesters are volumetric or gravimetric and not based on the actual 

quality of the input substrate (30). This is not an issue with farm based digesters which are 

usually designed to handle waste from a particular farm. In case of reactors where the 

substrates are mixtures of wastes or where complex substrates such as agricultural wastes 

whose quality can vary are used, it is important to be able to assess the substrate quality in 

terms of the amount of degradable solids and the amount of inhibitors if any. This is 

mainly in order to optimize the substrate utilization and hence the biogas production.  
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1.4 Substrates for biogas production:  

The substrate used to produce biogas in a digester is an important aspect that determines 

the OLR, the amount of biogas and the methane fraction of the biogas produced (2). The 

amount of biogas that can be produced from a particular substrate can be determined in 

various ways. The biochemical methane potential (BMP) assay is the most common 

experimental way to determine the amount and the rate of methane that can be produced 

from a substrate (31). This method was proposed by Owen et. al. in 1979 and is a batch 

process (32). A known amount of substrate is introduced into a flask containing a known 

amount of inoculum(an active culture of anaerobic bacteria), and if necessary, a nutrient 

solution (13). The flask is sealed and placed into an incubator maintained at a chosen 

temperature and the biogas production is measured over a given time period or till the 

biogas production is negligible over a long time period. The results are usually expressed in 

unit volume of biogas or methane produced per unit weight of volatile solids that was 

added as substrate. Although the results of a BMP batch test cannot be directly compared 

to the outcome that can be expected in a full scale continuous reactor, the assay provides a 

basis for comparison among different substrates. The disadvantage of the batch assay is 

the time taken for the experiment. While 30 days is the recommended time period over 

which the biogas production should be measured, some studies have used up to 100 days 

to test the BMP of recalcitrant substrates (32, 33). Due to the long time period required to 

assess the BMP of a material, in full scale operations, substrates are fed by weight or 

volume based on previous experience, and not based on the actual substrate quality and 

thus real-time adjustments of substrate input cannot be made (34). A reduction in the time 

taken to assess the methane potential of substrates will enable real time assessment of 

substrates in full scale biogas plants. Rapid assessment of the methane potential of feed-

stock that is to be purchased can be used to determine its monetary value. 

As mentioned earlier, the advantage of AD is that almost any biomass can be used as a 

substrate for biogas production, thus the options to choose from are numerous. Much 

research has gone into identifying species and cultivars of energy crops that can produce 

more biogas. Germany for example uses maize as one of the main substrates in their biogas 

plants (34). In general, energy crop production has been criticised for competing with food 

production for arable land. Agricultural  and livestock residues offer a good alternative to 

energy crops and have a great potential for biogas production because of the large quantity 

of organic matter contained in them (3). 

Intensive animal farming generates large quantities of manure; Denmark, for example 

produces more than 33 million tonnes of manure per annum and many of the biogas plants 

in Denmark run on animal manure along with wastes from industries (35, 36).   

However, the issue with many agricultural and livestock residues is their recalcitrance to 

AD. Agricultural residues such as straw, rice husk or wood chips often contain high 

concentrations of ligno-cellulose which is difficult to degrade. About 40 to 50% of the total 
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solids in manure are bio-fibres, a considerable part of which are recalcitrant to anaerobic 

digestion (37). The use of such biomass for AD may require pre-treatment to improve their 

degradability.  

Meadow grasses are a promising source of biomass that have been shown to be a good 

option for AD due to various reasons such as availability, the possibility for nutrient 

transfer and low energy and chemical input requirements (38, 39).  

1.5 Objectives of the PhD study:  

The previous sections have outlined the importance of monitoring the factors that affect 

biogas production. A lot of research has been carried out in using VFA as a monitoring 

parameter, some of them have used near infrared spectroscopy (NIRS) as the monitoring 

tool (23, 25, 40, 41). There have also been a lot of studies on the effects of ammonia on the 

biogas production (28, 42, 43). There is however a gap in real time measurement and 

monitoring of ammonia concentrations in substrates, and in the contents of an anaerobic 

reactor. 

 Another interesting issue is the need to determine the methane potential of a particular 

substrate in a relatively short period of time as this could be used for substrate quality 

assessment and valuation and to determine the substrate feeding rate.  

It has also been shown that certain types of substrates, although feasible in many ways, 

may require pre-treatment to improve the amount of methane that can be obtained from 

them before using them as substrates in a reactor. 

Thus the objectives of this PhD study were:  

1. Rapid assessment of the methane potentials of substrates 

2. Determining the ammonia contents in complex mixtures such as manure or 

digestates from anaerobic digesters.  

3. Improving the biogas potentials of agricultural and livestock residues using pre-

treatments 

These objectives were achieved by performing the following studies: 

1. Comparing the use of forage analysis techniques such as in-vitro organic matter 

digestibility assay (IVOMD) and the neutral detergent fibre (NDF) assay and NIRS 

to determine the BMP of meadow grasses 

2. Use of NIRS to assess the total ammonia nitrogen (TAN) contents of digestate using 

a probe that can be fitted directly onto an anaerobic reactor making it feasible for 

online monitoring. 

3. Thermal pre-treatment of cattle, pig and chicken manure to improve their BMPs 
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Apart from these main experiments on which Papers 1, 2 and 3 were based, a short study 

on improving the sample presentation method used in Paper 2 has been presented in the 

form of a report.  

1.6 Overview of the thesis structure: 

While chapter 1 aims at giving a basic idea about biogas and some of the issues that need 

attention which leads to the objectives of the study and how these objectives are met, 

chapter 2 focuses on the use of near infrared spectroscopy to address objectives 1 and 2. 

Chapter 3 explains the pre-treatment of substrates to improve their BMPs. This is followed 

by the appendix which includes Papers 1, 2 and 3, and a short report.  

1.7 List of papers: 
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Comparison of near infra-red spectroscopy, neutral detergent fibre assay and in-vitro 

organic matter digestibility assay for rapid determination of the biochemical methane 
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NIR monitoring of ammonia in anaerobic digesters using diffuse reflectance probe  
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Journal – Sensors 12 (2012) 2340-2350 

Paper 3: 

Effects of high temperature isochoric pre-treatment on the methane yields of cattle, pig 

and chicken manure 

Chitra Sangaraju Raju, Sutaryo Sutaryo, Alastair James Ward, Henrik Bjarne Møller 

Accepted- April 2012, Environmental Technology 
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Chapter 2 - NIRS in Anaerobic digestion: 

2.1 Introduction:   

Near infrared spectroscopy (NIRS) is a non-destructive analytical method that is widely 

used in applications where quick and efficient analysis is required, for example in 

industries for the rapid measurement of chemical composition or nutrient contents of 

materials or for quality control in pharmaceutical industries and food industries (44, 45). 

As it requires very little or no sample preparation it can be used for online monitoring and 

process control. Recent studies have used NIRS in the anaerobic digestion process for 

various purposes such as process monitoring, feed input control and early warning systems 

for process imbalances, to name a few (30, 31, 40, 41, 46, 47).   

The main principle behind NIRS exploits the chemical nature of the components that are 

in the sample that is being measured or scanned. Organic substances include molecular 

groups such as, -CH-, -NH- and -OH which have characteristic absorbance patterns (48, 

49). Molecules are in a constant state of motion and vibrate in the wavelengths associated 

with the infra-red region (48). NIR spectroscopy involves irradiating a sample with 

radiation of wavelength within the near infrared region (between the wavelengths 780 and 

2500 nm) and measuring either the reflected energy or the transmitted energy to study the 

changes in the overtones and combination vibrations of molecules (50, 51). The energy that 

is absorbed by a sample, in other words the wavelength of the absorption band, depends on 

the molecular groups present, and hence identity of the molecular group can be 

determined based on the measurements from NIRS.   

The basic components of an NIR spectrometer consist of a radiation source, a 

monochromator or an interferometer, a sample presentation accessory, and a detector (50-

53). The radiation source is usually a tungsten halogen lamp, the detector could be silicon, 

lead suphide (PbS), indium gallium arsenide (InGaAs) or indium arsenide (InAs) (48, 53).  

Fourier-transform NIR (FT-NIR) spectrometers are used for their fast measurement 

capability and for the advantage of obtaining a full spectrum in a single scan by measuring 

all frequencies simultaneously (31, 51). The components of an FT-NIR are shown in Figure 

2.1. Radiation from the source is sent through an interferometer and then to the sample 

(54). Depending on the mode of spectroscopy (for example, transmission or diffuse 

reflectance), the transmitted or reflected signal is sent to the detector. The signal from the 

detector is amplified and converted to a digital form and transferred to the computer (54). 

In case of measurements in the diffuse reflectance mode, the spectral data obtained, is 

recorded as log 1/R where R is the diffuse reflectance (55). 

 



22 
 

 

Figure 2.1:  Basic components of an FT-NIR spectrometer. Adapted from (54). 

Spectral data from NIRS are often noisy and measurements from samples that scatter 

incident light, such as ground meadow grass and digestate samples, add to the noise. It is 

thus important to pre-process the spectral data before building models based on it. There 

are various pre-processing methods that have been developed for different purposes. They 

can roughly be classified as scatter correction methods: multiplicative scatter correction 

(MSC), extended multiplicative scatter correction (EMSC), Detrend, standard normal 

variate (SNV) and as derivative methods: Norris-Williams and Savitzky-Golay 

Building models using spectral data to predict the reference variable can be explained as 

follows. 

Basic definitions (56):  

• Object – the sample that is under observation (in this case either a meadow grass 

sample or digestate sample) 

• The X-variable/ independent variable – Inexpensive or fast observation made on 

the object (in this case spectral data) 

• Y- variable/ dependent/ reference variable – The expensive or time and labour 

intensive observation made on the same object (in this case BMP or TAN value for 

each of the sample) 

The data is organised in the form of matrices to facilitate analysis. If there are ‘n’ number 

of objects, ‘p’ number of X-variables and ‘q’ number of Y- variables, the data matrices could 

be represented as shown in Figure 2.2. The X matrix has n rows of spectral data and p 

columns of spectral variables; each object is represented by one row containing p number 

of spectral variables. Similarly the Y matrix has n rows, each row representing one object 

with q dependent variables. 

Using multivariate analysis techniques, calibration models are built by combining the p 

measurements in X to give as good a prediction of Y as possible (57). This model is then 

used to predict the Y value of new samples based on their spectra i.e. X values (57). In 

other words, the spectral data are pre-processed if needed, and then related to a selected 

reference variable using multivariate analytical methods. Based on the correlations from 

these analyses, models to predict the reference variable are constructed. 

 

  
Source  Interferometer Sample Detector Amplifier Analog to 
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Figure 2.2: Organisation of data for multivariate analysis. Adapted from (56, 57) 

Once a calibration model has been built the performance of the model can be tested by 

validation to evaluate its predictive ability (56). The model performance and accuracy is 

evaluated based on the following terms. The root mean square errors are a measure of 

prediction error depending on the type of validation used: cross validation (RMSECV) or 

test set validation (RMSEP) (49). The root mean square error has to be minimized as it 

gives the average uncertainty of future predictions(50). The coefficient of determination 

(R2) is the proportion of the variance explained by the model (58) and is to be maximized. 

The number of components or latent variables is to be kept as low as possible without 

compromising the model quality. Too many components will lead to over-fitting with a low 

root mean square error of calibration (RMSEC), high R2 but a very high RMSEP (53, 56). 

The RPD is the ratio of the standard deviation of the response variable to the RMSEP or 

standard error of performance of the model (50). An RPD greater than 1.5 is moderately 

useful and an RPD above 4 is considered an excellent model (45, 59). The RPD is 

particularly useful in comparing the prediction abilities between alternative models (60). 

2.2 Application of NIR in the anaerobic digestion process:  

As part of this PhD study, NIRS was used to predict the BMPs of Danish meadow grasses 

(Paper 1) and to predict the TAN contents in the digestate of anaerobic digesters (Paper 2). 

Paper 1 was aimed at finding a faster way of determining the BMP of materials. For this, 

three analytical methods were tested: NIRS and two forage analysis techniques- in-vitro 

organic matter digestibility assay (IVOMD) and neutral detergent fibre assay (NDF). The 

BMP assay takes between 30 to 100 days and is the most common method used to 

determine the amount of methane that can be obtained from a certain substrate through 

anaerobic digestion (32, 33). There have been quite a few studies that have successfully 

related individual chemical components of substrates such as lignin, cellulose, 

hemicellulose, ADF, soluble carbohydrate, and nitrogen content among others and 
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combinations of these components to their BMPs (33, 61, 62). Compared to the BMP assay 

or the chemical analyses, NIRS is very quick and as mentioned earlier the NIRS method 

does not require the use of chemicals and can be used online and inline.  

The nutrition that ruminants can obtain from forage depends on the degradation of the 

plant cell wall by the rumen microbes (63). The IVOMD which can be expressed in 

percentage of dry matter (%DM), indicates the percentage of material that can be digested 

by the ruminants and hence the nutritional value of that feed. Since the process is 

anaerobic, it was interesting to see if the results of this assay would correlate to the BMP.  

The NDF assay measures the cell wall components and includes cellulose hemicellulose 

and lignin (64, 65). The pectic polysaccharides are not measured but since grasses have a 

low pectin concentration in their cell walls, NDF is considered a good estimate of cell wall 

contents in grasses (65). The aim was to see if just the cell wall contents, since it essentially 

represents the lignocellulosic complex, could be used to determine the BMP of a material.  

Paper 2 is focused on the application of NIRS in monitoring the anaerobic digestion 

process. Anaerobic digesters, especially those using livestock wastes and those that operate 

at thermophilic temperatures are susceptible to ammonia inhibition (42). Some studies 

have successfully used NIRS to monitor VFA’s (40, 47, 66). Paper 2 investigates the use of 

an NIR diffuse reflectance probe that can be directly fixed on to a reactor to predict the 

TAN content of digestate. 

2.3 Equipment and materials: 

The spectrometer was a Bomem QFA Flex Fourier transform - NIR spectrometer (Q-

interline A/S, Copenhagen, Denmark). The detector that was used depended on the 

material that was being scanned. The InAs detector was used for the meadow grass 

experiment (Paper 1) while the InGaAs detector was used for the digestate samples (Paper 

2). 

Materials used: Dried meadow grass samples obtained from various locations in Denmark 

were used to relate their BMP’s to their spectral data. Digestate samples from bench scale 

continuous stirred tank reactors (CSTR) were used for the ammonia monitoring 

experiment. More details regarding the materials can be found in Paper 1 and Paper 2. 

2.4 Multi-variate data analysis software: 

Two commercially available software, the Unscrambler ver. 9.8 software (CAMO Software 

A/S, Oslo, Norway) and LatentiX software ver. 2.00 (Latent5, Copenhagen, Denmark) 

were used for data analysis and for building models.  
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2.5 Data analysis:  

Various multivariate analytical methods and data pre-processing methods were used to 

derive useful conclusions from the large amount of spectral data that was obtained from 

scanning the various samples. There are various multivariate analytical techniques 

available like multiple regression, principle component regression (PC/MR) and partial 

least squares regression(PLSR) (57). The multivariate methods used in this PhD study are 

described in the following subsections. 

Data pre-processing:  

The data pre-processing methods available in the Unscrambler ver. 9.8 were used to 

improve the models obtained from the spectral data. The pre-processing methods that 

improved the models the most are described here. In Paper 1 the best results were obtained 

with mean normalized data. Mean normalization is a row operation where each row of 

spectral data is divided by its average value. The original values describing the object are 

replaced by relative values (67). In Paper 2, standard normal variate (SNV) 

transformations are used to remove the effects of scatter(68). In SNV transformations, 

each spectrum is centered and then scaled by its own standard deviation (55). 

Principal component analysis (PCA):  

When dealing with large data matrices, PCA is used to reveal variables that describe some 

inherent structure in the data and to reduce the dimension of the data without loss of 

information (44, 69). This is done by finding a linear combination of data (a principal 

component) that has maximum variance, and then the next linear combination that has 

the second highest variance is determined and so on until most of the variance in the data 

has been described by those components. In other words, the first component is a vector 

that lies in the direction of the largest variance; the second is orthogonal to the first 

component and lies in the direction of the next largest variance and so on. These principal 

components are used to describe the data thus reducing the dimension of the data. PCA 

separates the data structure from noise (66). It also groups objects with similar 

characteristics together and aids in identifying outliers. PCA decomposes the X matrix into 

two smaller matrices called the scores and the loadings (70). It is possible to have an 

overview of the associations between objects and variables using the scores and loading 

plots obtained from PCA (71).   
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Partial least squares (PLS) regression and interval PLS (iPLS):  

PLS is useful where a large amount of independent variables (in this case spectral data) are 

used to predict a set of dependent variables (BMP in Paper 1 and TAN in Paper 2). It can 

analyze data that is highly correlated and noisy (72). Ordinary multiple regression is not 

suited for spectral data as the spectral data are highly correlated (57). Unlike PC/MR, the 

PLS method uses information from both the spectral data set and the dependent variable 

data set to determine the PLS components/ latent variables and the components are 

obtained by maximizing the covariance between the spectra and the dependent variable 

(73). PLS assumes that the underlying set of latent variables for both the spectral data and 

the response variable are the same (74). The purpose of PLS is to build a linear model that 

can use spectral data to predict the dependent variable (75). 

Interval partial least squares regression (iPLS) is a method that selects variables that are 

most useful for a model by building local PLS models on equidistant sub-sections of the 

spectrum and comparing the performance of these models in terms of RMSECV with the 

global model (75). The output is graphical and it visually represents the wavelength ranges 

that have been used for modelling (Paper 2). iPLS is a method that optimizes the predictive 

power of PLSR (75). 

2.6 Summary of results: 

The results from the studies that have been done (Paper 1, Paper 2 and the Report) show 

that NIRS is a promising analytical tool in process monitoring as well as feed input 

management.  

• The NIR prediction of the BMP of meadow grasses had an RPD of 1.75 which makes 

it a moderately useful model that can discriminate between high and low values of 

the response variable (45, 50). The NDF and IVOMD showed very little correlation 

to the BMP (Paper 1). 

• The study using NIRS to detect TAN in digestate was successful, and can in future 

be optimized to be used as a monitoring tool (Paper2). 

• The importance of choosing the right variables while building a model was also 

demonstrated (Paper 2). 

Further studies can be directed at building models to predict the BMP of other common 

substrates that are used for biogas production. These models can be used to classify a 

substrate as having a high or low BMP. By classifying the substrate and by recognizing 

if the material has ammonia concentrations that are inhibitory, the feeding rate of the 

substrate or in case of co-digestion plants, the ratio in which it is mixed, can be 
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controlled. As NIRS has been shown to predict TAN contents in a complex material 

such as digestate (Paper 2), it could be used to screen manure based substrates for their 

ammonia contents prior to loading into the reactor thus preventing the risk of 

inhibition and to maintain an optimum C/N ratio. The results from the Report show 

that the way the sample is presented to the NIR instrument is important, which 

suggests that the model in Paper 2 could be improved further. While extremely good 

results can be obtained in the laboratory by keeping conditions as similar as possible, it 

would be better to mimic practical conditions even though the quality of the models 

may degrade. If a model  is to be applied to process monitoring it is important that the 

calibration contains all ranges of the response variable that might be encountered and 

that it includes all possible variations in conditions that might occur (76).  
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Chapter 3 – Pre-treatment of substrates 

3.1 Necessity of pre-treatment 

The use of agricultural and livestock waste for the production of biogas is often 

uneconomical due to the content of recalcitrant organic matter. The economical 

profitability of biogas plants that use such waste as primary feedstock depends on the 

addition of other substrates with high methane yields (77). Biogas yield of pig and cow 

manure is between 25 and 36 m3/tonne of fresh mass due to a low organic dry matter 

content (2 to 10%) with a high fibre fraction (78). Manure based biogas plants in Germany 

add co-substrates such as energy crops, waste from food and agricultural industries, 

markets, canteens, and the municipal sector to improve profitability (78). Similarly most 

large scale biogas plants in Denmark use manure as feedstock along with co-substrates 

such as sewage sludge and industrial organic waste (77, 79).  

Manure characteristics differ depending on various factors and therefore their methane 

potentials differ as well. Some of the factors that affect the manure characteristics are, the 

species, breed and growth stage of the animals, the feed being used, the amount and type 

of bedding material, the stabling system used, and the method and period of storage (80). 

The fibre fraction of manure consists mainly of undigested plant material, nutrients and 

often includes bedding material (81). About 5 to 73% of the organic matter in manure 

consists of lignocellulosic fibres that are recalcitrant to microbial degradation (62).   

Agricultural residues such as straws, rice husk, and corn stover have high lignin 

concentrations. Wheat has a lignin content of 15 to 19% whereas corn stover has been 

reported to be about 19% lignin (77, 82). As mentioned in the introduction, the presence of 

lignin creates a barrier for microbial degradation of the lignocellulosic complex and a 

higher lignin content has been related to lower methane yields (62). Thus the use of 

agricultural or livestock waste to produce biogas has to overcome the issue of 

lignocellulose, to anaerobically convert as much of the volatile solids in the given 

timeframe as possible.  

Lignocellulosic content is a term used to describe the three dimensional composite 

structural material in a plant cell wall, which is mainly 30 to 50% cellulose, 15 to 35% 

hemicellulose and 10 to 30% lignin (82, 83). The lignocellulosic complex varies among 

plant species and in addition the composition and percentages vary within the same plant 

species depending on age, growth stage and other factors (84). Lignin is a phenolic 

polymer and is not degradable by anaerobic processes, whereas the cellulose and 

hemicellulose are carbohydrate polymers (82, 85). The lignin, cellulose and hemicellulose 

are closely associated and form tight complexes, limiting the access of hydrolytic enzymes 

to the cellulose and hemicellulose and slowing the rate of hydrolysis. Lignin is the natural 

defence of plants against microbial attacks and hence some intervention is needed to break 
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down the lignocellulosic complex before it can be degraded anaerobically within a given 

timeframe. Pre-treatments are aimed at removing or changing structural and 

compositional constraints to improve the hydrolysis rate (86). An effective pre-treatment, 

solubilises hemicellulose thus releasing sugars, decreases cellulose crystalinity, increases 

the specific surface area and results in increased access of enzymes for hydrolysis, with 

minimum formation of inhibitors and loss of substrate (77, 87).   

3.2 Lignocellulosic components 

Lignin 

Lignin is an amorphous phenolic polymer usually made of three different phenylpropane 

units (p-coumaryl, coniferyl and sinapyl alcohol) that are held together by different types 

of linkages (88). Lignin provides rigidity, impermeablity and resistance to microbial 

attacks and to oxidative stress to the plant cells (89). Higher proportion of lignin indicates 

higher resistance to chemical and enzymatic degradation and lower methane potential of 

susbtrates (62, 90). Solubilization of lignin occurs with alkaline agents and at temperatures 

above 180°C (83, 91).  

Cellulose 

Cellulose is a linear polymer composed of cellobiose units (a glucose-glucose dimer) and 

the hydrolysis of cellulose releases the individual glucose monomers: the process known as 

saccharification (82). The cellulose chains are grouped together to form microfibrils and 

the microfibrils are bunched together to form cellulose fibres (89). The amorphous and 

crystalline nature of cellulose is attributed to the presence of inter-chain hydrogen bonds 

within the microfibrils (89).  

Hemicellulose 

Hemicellulose is a carbohydrate polymer that surrounds the cellulose fibres and is made of 

both five-carbon pentoses (xylose and arabinose) and six-carbon hexoses (galactose, 

glucose and mannose) and acetylated sugars (82, 89, 90). Hemicellulose is highly 

branched and amorphous and hence is easily hydrolysed compared to cellulose (82). The 

hemicellulose composition differs in different biomasses (89). The solubilization of 

hemicellulose depends on the pH and the moisture apart from temperature and under 

neutral conditions solubilization of hemicellulose starts at 150°C (88).  
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3.3 Various methods of pre-treatment 

The goal of pre-treatment methods applied to recalcitrant biomass is to alter the structure 

and chemical properties of the biomass to improve the rates of degradability (92). Pre-

treatment methods can be classified as mechanical, thermal, chemical, biological and 

combinations of these.   

Mechanical 

Mechanical pre-treatments, which are usually size reduction techniques, aim at increasing 

the available surface area and reducing the cellulose crystalinity and the degree of 

polymerization (88, 89). Coarse size reduction reduces the biomass size to about 10 to 50 

mm, chipping reduces the size to 10 to 30 mm while grinding and milling can reduce the 

sizes to between 0.2 to 2 mm (89). The advantages of this method are that there is no risk 

of formation of inhibitory compounds, and there is improvement in the methane yield due 

to size reduction in some cases, the main disadvantage is the high energy requirements 

(88). In certain cases though, a minimal size reduction is required to overcome heat and 

mass transfer problems in downstream processes (83). 

Thermal 

There are different ways of applying thermal pre-treatment to improve the hydrolysis rate 

of lignocellulosic biomasses. Steam treatment - where the biomass is exposed to 

temperatures up to 240°C and pressure for a few minutes (88). Steam explosion is similar 

to steam treatment, except at the end of the pre-treatment period the pressure is released 

suddenly, causing the disruption of the structure of the material (88, 93). Liquid hot water 

treatment, where the water is maintained as a liquid at high temperatures (160 to 230°C) 

and under high pressures (>5 MPa) (83, 88) or just thermal pre-treatment, an isochoric or 

constant volume process, where the material is placed in a sealed container and heated 

without applying extra external pressure (91). Another method is autohydrolysis, a process 

that hydrolyzes hemicelluloses using highly pressurised liquid hot water at 200°C (86).   

Chemical 

Acid or alkali based pre-treatments can be used alone or in combination with thermal pre-

treatment. Acid based pre-treatments use either dilute or strong acids to hydrolyse the 

hemicellulose content and to solubilize and precipitate lignin (88). Degradation products 

such as furfurals or hydroxymethyl furfural (HMF) are formed during acid hydrolysis (83). 

Although these compounds are inhibitory to methanogens, they adapt to them after 
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acclimatization, to a certain extent (88). The choice of acid is important, using sulphuric or 

nitric acid introduces sulphates or nitrates into the system and reduces the methane 

production (88). 

Addition of acid to thermal pre-treatment catalyses the solubilization of hemicellulose and 

could reduce the optimal pre-treatment temperature (88). In essence thermal pre-

treatments by themselves behave like dilute acid hydrolysis. Water at high temperatures 

behaves as an acid and the hydrolysis reaction is catalysed by hydronium ions (H3O+), in 

addition acetic acid is released from the hemicellulose fraction under high temperatures 

adding to the effect(83, 86).  

Alkali pre-treatment uses bases like calcium oxide, ammonia and sodium hydroxide to 

solubilize lignin (83). In alkaline hydrolysis there is an increase in internal surface area of 

the lignocellulosic material due to swelling induced by the alkali (89). This, along with 

saponification of the intermolecular ester bonds that link hemicelluloses to other 

components, leads to the separation of the lignin and the remaining carbohydrates (86). 

Since the lignocellulosic composition varies among plant species, the efficiency of 

separating the lignocellulosic components can be improved by exploiting these variations. 

For example, the structure, composition and properties of lignocellulose from herbaceous 

materials like wheat straw are very different from those of softwoods or hardwoods (94). 

Alkaline pre-treatment methods are more effective on materials with low lignin contents 

such as agricultural residues, herbaceous crops and hardwoods than on softwood which 

has high lignin contents (95). 

Biological 

Biological pre-treatments mainly use fungi to degrade the lignin fraction (83). A wide 

variety of fungi and bacteria are known to degrade lignin, of which white rot fungi are 

thought to be the most efficient (84, 96, 97). Although the process is natural, and does not 

require the use of chemicals or energy, which reduces the costs involved, the process is 

slow and requires a longer residence time which is not practical for large scale applications 

(83, 89). 

3.4 Pre-treatment method used in this PhD study: 

Paper 3 investigated the use of thermal pre-treatment in improving the BMPs of different 

types of manure – cattle, dewatered pig and chicken manure. The process was carried out 

under isochoric conditions where a known amount of material was sealed in a high 

temperature and pressure reactor, and heated to the desired temperature, held at that 

temperature for the required amount of time and then cooled down to about 30°C. Figure 
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3.1 shows a typical heating and cooling curve for cow manure pre-treated at 100°C and at 

200°C (Paper 3). The cooling was by a water bath with water at ambient temperature. 

During these pre-treatment experiments, only the temperature was constantly monitored 

and controlled, the pressure was not controlled. 

 

 

Figure 3.1: A typical heating and cooling curve for the pressure vessel. 

Equipment and materials 

The reactor used was a Parr high temperature and pressure reactor (Parr instrument 

company, USA, model -Parr 4524) and consisted of a stainless steel reactor vessel fitted 

with temperature and pressure measurement devices and safety valves. The reactor was 

also equipped with a proportional integral derivative (PID) controller that was used to 

monitor and control temperature, a temperature probe that was inserted into a thermo-

well that extended into the pressure vessel and a mechanical stirrer with a six blade 

impeller and a variable speed motor. The heating was by an insulated external heating 

element enveloping the pressure vessel which could be raised or lowered manually. The 

unassembled and assembled reactor can be seen in Figure 3.2. The details of the manure 

samples with regards to their collection, dry matter contents, volatile solids contents can 

be found in Paper 3. 
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Figure 3.2: Parr high temperature and pressure vessel – unassembled and assembled 

3.5 Severity factor  

The results from Paper 3 when compared to those of other similar studies indicated that 

the duration of the pre-treatment also influenced the effect of the pre-treatment on the 

BMP along with the temperature used. 

 A term called severity factor is used to measure the severity of steam pre-treatment mainly 

in the bioethanol industry (88). The severity factor (log R0) combines the temperature and 

the duration of pre-treatment and is given by: 

 “log R0 = log(t × e((T-100)/14.75))”       

- with ‘t’ in minutes and ‘T’ in degrees Celsius (88, 98). 

This term was applied to thermal pre-treatments to see if it could be correlated to the 

changes in BMP of manure. A plot of the BMP vs. the severity factor is shown in Figure 3.3. 

The data used to generate the plot along with the sources of the data is tabulated in Table 

3.1. 
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Figure 3.3: Correlation of BMP to severity factor of thermal pre-treatment for pig and cattle 

manure 

From figure 3.3 it can be seen that other than one exception in each case, a general trend 

can be seen where the BMP increases along with the severity factor and reduces after a 

certain severity factor. The decrease in BMP is expected as at higher temperatures the 

formation of inhibitors or substrate degradation occurs (86, 88).  

With more data points, a model could be made relating the severity factor to the BMP. The 

severity factor can then be used to decide if lower temperatures for longer pre-treatment 

duration or higher temperatures for shorter duration is more suitable and yet have the 

same effect on the BMP of that substrate. It would be expected that the BMP of each type 

of manure would have a different correlation with the severity factor. For example, it 
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would be expected that the BMP-severity factor model of straw would be different from 

that of dewatered pig manure.  

Table 3.1: Data used to calculate the severity factor, along with the references for the sources 

Reference Manure type 
Temperature 

in °C 
Time in 

minutes 
Severity 

factor 
BMP in L/ Kg 

VS (30 days) 

(99) Dewatered pig manure 100 60 2.2 180 

(99) Dewatered pig manure 150 60 3.7 50 

Paper 3 Dewatered pig manure 100 15 1.6 208 

Paper 3 Dewatered pig manure 125 15 2.3 234 

Paper 3 Dewatered pig manure 150 15 3.1 232 

Paper 3 Dewatered pig manure 175 15 3.8 240 

Paper 3 Dewatered pig manure 200 15 4.6 277 

Paper 3 Dewatered pig manure 225 15 5.3 272 

(100) Pig manure 170 60 4.3 291 

Paper 3 Cattle manure 100 15 1.6 222 

Paper 3 Cattle manure 125 15 2.3 242 

Paper 3 Cattle manure 150 15 3.1 244 

Paper 3 Cattle manure 175 15 3.8 275 

Paper 3 Cattle manure 200 15 4.6 296 

Paper 3 Cattle manure 225 15 5.3 259 

(100) Cattle manure 170 60 4.3 130 

3.6 Summary of results 

The effect of thermal pre-treatment was more pronounced in some manure types than 

others. The effect mainly depended on the type of substrate, the pre-treatment 

temperature and the pre-treatment duration. 

• Dewatered pig manure showed improved BMP from pre-treatment temperatures of 

125°C onwards 

• Cattle manure needed pre-treatment temperatures above 175°C for improved BMP 

• Chicken manure showed no improvement in the BMP due to thermal pre-treatment 

but showed a decrease at 225°C 

• In cases where significant increases were seen due to the pre-treatment, the biggest 

difference was seen within the first 30 days. Increases in initial methane production 

rates are important when considering full scale biogas plants. 

• For practical applications, it seems thermal pre-treatment can be applied to 

dewatered pig manure, as, among the three manure types tested, it improves 

significantly at lower temperatures in comparison to the other two manures. A 

proper cost benefit analysis will be required to see if the pre-treatment can improve 

the economic profitability of the biogas plant. 
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One main aspect that is to be considered with thermal pre-treatment is the energy 

balance. Thermal pre-treatments have been applied to full scale operations to improve 

their economic profitability (100, 101). It is important to ensure that the use of energy 

for the pre-treatment is justified by more than an equivalent increase in energy in 

terms of methane yields. Thermal pre-treatments can be justified where waste heat is 

available and where the heat used for pre-treatment can be recycled or where the 

energy gain due to the pre-treatment is much higher than the extra energy input that is 

required. 
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Abstract: The feasibility of using a diffuse reflectance probe attached to a near infrared 

spectrometer to monitor the total ammonia nitrogen (TAN) content in an anaerobic digester 

run on cattle manure was investigated; as a previous study has indicated that this probe can 

be easily attached to an anaerobic digester. Multivariate modelling techniques such as partial 

least squares regression and interval partial least squares methods were used to build models. 

Various data pre-treatments were applied to improve the models. The TAN concentrations 

measured were in the range of 1.5 to 5.5 g/L. An R2 of 0.91 with an RMSEP of 0.32 was 

obtained implying that the probe could be used for monitoring and screening purposes. 

Keywords: NIRS; biogas; ammonia; inhibition; monitoring; manure; PLS; iPLS 

 

1. Introduction  

Intensive farming methods generate large amounts manure that need safe disposal. In Denmark, 

more than 33 million tonnes of manure are produced per annum [1]. Current manure management 

strategies involve spreading of manure on agricultural fields to recycle the nutrients, aerobic treatment, 

separation of the solid and liquid fractions, composting and anaerobic digestion among others [2]. 
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Denmark has many full-scale biogas plants that use livestock manure as substrate along with organic 

wastes from industries [3]. Livestock wastes contain ammonia, which is inhibitory to anaerobic 

digestion, and contain compounds like urea and proteins that will degrade into ammonia [4]. Ammonia 

is present in the form of the ammonium ion (NH4
+) and free ammonia (NH3), of which the free 

ammonia (FA) is suspected to be the main cause for inhibition [5]. The ammonium ion and free 

ammonia exist in equilibrium, and the equilibrium depends on the temperature and pH. A decrease in 

pH reduces the amount of free ammonia. When a process is inhibited by free ammonia, the 

methanogens are affected, and consequently the volatile fatty acids (VFA) accumulate reducing the 

pH, this in turn reduces the free ammonia concentration [4]. This leads to a stable condition but at a  

sub-optimal level called an inhibited steady state. Total ammonia nitrogen (TAN) levels of more than  

4 g N/L were found to cause inhibition; levels beyond this showed stable biogas production after an 

initial adaptation period but this biogas yield was lower than that of uninhibited reactors [4]. Livestock 

manure can often have more than 4 g N/L of ammonia, especially in the case of swine manure and 

poultry manure [4], the ammonia concentrations can also be high in anaerobic co-digestion plants that 

mix high protein wastes to their substrates. Thus, monitoring the ammonia content of the slurry in 

anaerobic digesters is an important aspect of process control and in managing the substrate feeding rate. 

Ammonia content is usually measured and monitored by laboratory analysis such as colorimetry. 

This procedure involves the use of reagents, is time consuming and is not practical for process control. 

Near infrared (NIR) spectroscopy has been used to monitor various process indicators in the anaerobic 

digestion process. Earlier experiments using Trans-flexive NIR Spectroscopy (TENIRS) has shown 

good results in predicting the ammonia contents in an anaerobic digester [6]. Another study that 

showed good results in applying NIR spectroscopy to predict ammonia, used the polyethylene bag 

method where a sample of cattle manure was filled into a polyethylene bag and then pressed on to the 

surface of the scanning window of the NIR spectrometer [7]. However, the TENIRS requires the use of 

a macerator to reduce the size of the slurry particles to below 3 mm before the sample can be sent 

through it. The polyethylene bag method requires the sample to be taken out of the reactor and then 

analysed elsewhere.  

A previous study used a reflectance probe to monitor the propionate contents of a small 

continuously stirred reactor successfully [8]. It has also been shown that the probe can be directly fitted 

on to a reactor without major changes to the reactor body [9]. The aim of this study was to investigate 

the feasibility of predicting the ammonia content of manure using a diffuse reflectance probe. The 

reflectance probe also offers easy maintenance and unlike transmission spectroscopy does not depend 

on the transmission path lengths. A drawback of the reflectance probe is that more scatter is expected, 

and therefore more noise will be added to the spectra. This study describes the first step which is to 

determine if the diffuse reflectance probe can actually be used to determine the total ammonia nitrogen 

(TAN) concentrations in a complex material such as slurry from an anaerobic digester and if feasible, 

future studies can be directed at fitting the probe onto a full scale anaerobic reactor and test its 

performance. The slurry samples were scanned offline, using the diffuse reflectance probe. The 

spectral data was analysed using multivariate analysis and models relating the spectral data to the TAN 

contents were developed. Manure or slurry samples are a matrix of particles of different sizes and as a 

consequence, measurements based on reflectance mode will have variation in light scattering (i.e., 

wavelength dependent path length variation) between samples which can negatively affect the 
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modelling process. The effects of scatter can be corrected mathematically using data pre-processing 

methods; such methods were used to improve the models. 

2. Experimental Section 

2.1. Sample Collection 

Five bench scale continuous reactors were run on cattle manure that was collected from dairy cattle 

farms located in the Research Centre–Foulum (Denmark). The reactors had a working volume of  

7 L and were operated at a thermophilic temperature of 50 °C. Four of the reactors were used to test 

the effect of ammonia inhibition on the methane yield while the remaining one served as the control. 

Urea (crystallized Ph. Eur Cat. No. 2880.362) at concentrations of 0.175, 0.350, 0.525, 0.700% w/w 

were added to the four reactors to induce ammonia inhibition. The reactors had a retention time of 14 

days. About 200 g of digestate was collected from each of the reactors twice a week, and the total 

ammonia nitrogen (TAN) content of the samples in g/L was measured by colorimetry at 690 nm, using 

the Spectroquant ammonium test 1.600683(EPA 350.1) and a Merck® spectrophotometer After the 

TAN analysis the samples were frozen in 250 mL polyvinyl chloride (PVC) containers until the NIR 

scanning was performed. The TAN values were spread between 1.5 to 5.5 g/L and included many 

samples that had TAN levels more than the 4 g N/L above which process inhibition is said to occur [4]. 

These ranges were useful to see if the probe could detect ammonia at levels that are inhibitory and also 

at levels that are acceptable. Figure 1 is a histogram of the TAN values showing the spread of the 

reference data points. The effect of the ammonia inhibition on the methane yield of the manure will be 

published in a separate paper.  

Figure 1. Histogram depicting the spread of the TAN values. 
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2.2. NIR Scanning 

The NIR scanning was performed using a Bomem QFA Flex Fourier Transform spectrometer fitted 

with an InGaAs detector (Q-interline A/S, Copenhagen, Denmark). The diffuse reflectance probe that 

was used (QIA2050, also from Q-interline A/S) had a stainless steel body with a 5 mm sapphire window 

embedded into it and scanned in the range of 833.3 nm to 2,500 nm (12,000 cm 1 to 4,000 cm 1). The 

probe is specifically optimized for materials with high scatter like slurry from anaerobic digesters.  

The NIR scanning, as mentioned earlier, was performed offline. The frozen digestate samples were 

first brought to room temperature (19 to 20 °C) by thawing at room temperature overnight. The NIR 

probe was rinsed with de-ionized water, wiped clean with a tissue and then placed into the PVC 

container containing the digestate sample and clamped into position using a laboratory clamp stand 

such that there was at least 2 cm of sample beneath it, ensuring that the position was the same for every 

sample. An agitator was immersed parallel alongside the probe and the digestate sample was mixed at 

190 rotations per minute (rpm) to make sure that enough sample passed in front of the scanning 

window of the NIR probe. The speed of the agitator was optimized by trying different rpm settings to 

ensure that there was no bubble formation which would negatively impact the scan while ensuring the 

sample did not settle. For each sample, the measurement took about 80 s and consisted of 256 scans 

which were then averaged for that particular sample. A total of 119 manure samples were scanned in a 

time-span of two days. The background scan was measured against a white spectralon disk. 

2.3. Model Calibration and Validation 

NIR spectra are often noisy [10] due to various reasons, including instrument noise and high 

absorbing materials, and detector performance. The entire spectra, obtained from the NIR spectrometer 

amounted to 1,006 spectral variables. A lot of the variables were noisy due to high absorbance in 

wavelengths above 1,800 nm and due to low detector sensitivity to wavelengths below 900 nm. These 

areas were consequently cropped. There is often offset and slope variation between NIR spectra of 

samples that have equal analyte concentration but different light scattering properties. Light scattering 

differences in spectra can be minimized by data pre-processing.  

Data pre-processing is therefore a necessary step before modelling and can be classified into two 

main types. The first are scatter correcting methods such as multiplicative scatter correction (MSC), 

extended MSC (EMSC), standard normal variate (SNV), de-trending, baseline offset correction (BOC) 

and normalization. The second are spectral derivative pre-processing methods such as Norris-Gap 

(NG) and Savitzky-Golay (SG) polynomial derivatives. The data pre-processing methods available in 

the Unscrambler Version 9.8 software were applied to the spectral data and using the pre-processed 

data, models to predict the TAN content were developed. 

Two modelling methods: Partial least squares regression (PLS) and interval partial least squares 

(iPLS) were used to relate the spectral variables obtained from the NIR to the reference variable (the 

measured TAN values). 

The commercially available Unscrambler Version 9.8 software (CAMO Software A/S, Oslo, Norway) 

was used to develop the PLS models. The PLS is based on the regression method developed by Herman 

Wold [11]. Each model was validated by both full cross validation and test set validation. Full or  
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leave-one-out cross validation is a model validation method where one sample is left out iteratively and a 

calibration model is built, and then the sample that was left out is predicted using this model. The 

iteration is continued until all samples are left out of the calibration set once. For the test set validation 

the data set was divided into a calibration dataset and a validation dataset that both covered the range of 

ammonia levels: the data was listed according to the ammonia level, and every fourth sample was added 

to the test set (29 samples) and the rest of the samples were included into the calibration set (90 samples).  

The other method used for modelling was the iPLS which is a graphically oriented local modelling 

procedure [12]. The iPLS builds local models on sub-intervals of the whole spectrum and selects the 

optimum sub-intervals in the spectral data to give precision prediction models [12,13]. Each  

sub-interval contains a selected number of spectral variables. The iPLS models were built using the PLS 

toolbox Version 6.2.1 (Eigenvector Research Inc., Wenatchee, WA, USA) in Matlab Version 7.12 

(MathWorks, Natick, MA, USA). The iPLS was run using forward selection on raw and on SNV  

pre-processed spectra with a sub-interval size of 30 variables and a maximum of four PLS components 

(or latent variables) were allowed. To decide upon the number of components that could be used, the 

number of components was varied and looking at the RMSEP of the full model it was found that there 

was no advantage in using more than four components. For validation during iPLS optimization, full 

cross validation was used. When the optimum interval combination was found, the model was 

validated using the test set. 

The prediction performance of the models was evaluated based on their modelling parameters: the 

coefficient of determination (R2), the root mean square error of prediction (RMSEP) and by their residual 

prediction deviation (RPD) which is the ratio of the standard deviation to the RMSEP [14]. The number 

of principal components used to construct the model was also used as an indicator. High R2 and RPD 

values, minimum number of components possible and low RMSEP values indicated a good model. 

In general, eliminating redundant variables and basing models on the variables that are significant 

will give lower estimation errors [15]. The iPLS automatically provides the variables that correlate the 

most to the reference variable. In the case of PLS, once the best possible model was built, the number 

of spectral variables was reduced by using Marten’s uncertainty test function [16] to see if the model 

could be improved further by removing variables that are not important to the model. The uncertainty 

test function is available in the Unscrambler Version 9.8 software and uses the jack-knifing method to 

separate the unimportant variables from the useful ones hence simplifying the model. The reduced set 

of variables was used to build a new model and then the uncertainty test was once again used to reduce 

the variables further. This iterative approach was continued till the modelling parameters began to 

deteriorate. The uncertainty test was also applied on the entire spectral range to investigate if the 

results, after removing the unimportant variables, would be comparable to those of the best models 

obtained by other methods. 

3. Results and Discussion 

The validation statistics including the modelling parameters of selected models are listed in Table 1. 

Models 1 to 6 are the PLS models while models 7 and 8 are from iPLS. From the Figure 1 it can be 

seen that the frequency of the TAN values is not even. An even spread of values would give a more 

robust calibration model [17]. 



Sensors 2012, 12 2345 

 

 

Table 1. Validation statistics. 

Model  

number 
Method 

Data pre- 

processing 

Number of  

spectral variables 

Spectral range 

(nm) 
RMSECV

R
2
  

(CV *)

Number  

of PCs 
RMSEP 

R
2
  

(TS **)
RPD 

1 PLS  raw 400 847.2 to 1,770.8  0.66 0.63 6 0.56 0.72 1.93 

2 PLS  raw 280 967.3 to 1,657.6  0.36 0.89 11 0.34 0.90 3.17 

3 PLS  SNV 280 967.3 to 1,657.6 0.38 0.88 9 0.32 0.91 3.43 

4 PLS  SNV 73 - 0.36 0.89 6 0.37 0.88 2.91 

5 PLS  SNV 117 

1,010 to 1,100, 

1,390 to 1,440 and  

1,510 to 1,650  

0.45 0.83 16 0.50 0.77 2.17 

6 PLS  raw 43 - 0.54 0.76 6 0.46 0.81 2.34 

7 iPLS raw 119 
1,127.2–1,333.6 and

1,525.0–1,634.7 
0.55 0.74 7 0.46 0.81 2.33 

8 iPLS SNV 119 
1,127.2–1,333.6 and

1,525.0–1,634.7 
0.43 0.84 5 0.32 0.91 3.39 

* Cross validation; ** Test set validation; Model number 4 is obtained by reducing the number of variables used in 

model 3; The spectral ranges for models 4 and 6 are not mentioned as they consist of many discontinuous intervals. 

Figure 2 is a spectral plot of the absorbance vs. the wavelengths (in nanometers) for all scanned 

samples and gives an overview of the various spectral regions used for constructing models in this 

study. The raw data obtained from the NIRS included noise, and the noisy sections of the spectra were 

removed after visual inspection and reduced to 400 variables in the region of 847.2 nm to 1,770.8 nm. 

At the same time, the plot of the raw spectra showed one scan that seemed very different from the 

others, and this scan was removed as an outlier. Three other samples with high residuals and Hotelling 

T2 values were also excluded. An example of the results plot obtained from the PLS modelling done 

using the Unscrambler Version 9.8 software, is shown in the supplementary section. 

Figure 2. Spectral regions used for developing the models. A1, A2 and A3 represent the 

regions associated with the NH4
+ group. 
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Model 1 is based on the 400 variables, the relatively low R2 and high RMSEP showed that there was 

scope for improvement. Various continuous sections within this selected spectral region (with 400 

variables) were investigated and the region that gave the best correlation (model 2) was selected for 

further data pre-processing. The spectral region that gave the best correlation to TAN was between  

967.3 nm to 1,657.6 nm and included 280 variables. This region includes most of the regions associated 

with the NH4
+ group. The wavelengths in NIR spectroscopy associated with the NH4

+ group are: 1,010 to 

1,100 nm, 1,390 to 1,440 nm, 1,510 to 1,650 nm (represented as regions A1, A2 and A3 respectively in 

Figure 3) and 2,330 to 2,400 nm [18]. However, model 5 which was built by selecting only the specific 

spectral regions associated with the NH4
+ group (excluding the last range which was noisy) and 

correlating it to the reference variable did not perform better than model 2 or model 3. In NIRS, 

anharmonicity, interactions between the constituents [18] and overlapping absorption bands make it 

difficult to ascribe a particular component to a certain wavelength region. The use of chemometrics and 

especially multivariate variable selection methods such as jack-knifing and iPLS make it possible to 

overcome this by identifying the variables that are most relevant. A model based on all the 1006 spectral 

variables available, showed extremely low R2 and extremely high RMSEP which was expected as a lot 

of noisy variables had been used. But reducing the number of variables to 43 by using the uncertainty 

test iteratively, improved the prediction capabilities of the model based on the entire spectral range 

considerably (model 6) again emphasizing the importance of choosing the right variables. 

While using PLS modelling on the 400 variables dataset, pre-processing of the data improved the R2 

and RMSEP of the models only slightly. Pre-processing the spectral data (280 variables) by the SNV 

method (model 3) improved the model slightly more than other pre-processing methods. SNV is used 

to remove slope variation and to correct for scatter effects. This is a mathematical transformation 

method, where each spectrum is corrected individually by first centering the spectral values, and then 

the centered spectrum is scaled by the standard deviation calculated from the individual spectral  

values [10,19]. Although the improvement in the model was small, the number of components used for 

the modelling decreased by 2. Reduction of the number of components used in modelling increases the 

robustness of the model and makes the model less sensitive to noise [15]. Lowering of the number of 

components indicates reduction of noisy variables that are included in the calibration model. This was 

similar with the use of the uncertainty test to reduce the number of variables (model 4). Although 

model 4 did not change much in terms of R2 and RMSEP compared to model 3, the number of 

components was reduced by 3 and the number of variables used to build the model were reduced 

considerably.  

Figure 3 is a sample of the graphical output from the iPLS modelling, which is a plot of the 

RMSECV vs. the variable number (model 8). It visually presents the variables that were most relevant 

for the modelling process by selecting the intervals that have a low RMSECV and indicating them in 

green and the redundant ones in red. The dotted line at the top of the plot represents the RMSECV of a 

model built on the entire variable range. A plot of the mean spectra is also given as a black line which 

aids in identifying the regions of the spectra that are important. 
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Figure 3. The output of iPLS; RMSECV with intervals vs. the selected variables 

(represented as variable numbers, not wavelengths). The selected variables are in green and 

the omitted variables are in red. The number of latent variables (LV) used are shown as well. 

 

The iPLS procedure was used as another method for selecting the optimum variables regardless of 

knowledge of the assignment of the NH4
+ group in the NIR region. The iPLS models used the 400 

variables region to iteratively search for variables that gave the least RMSECV. The iPLS models 

improved in terms of R2, RMSEP, and the number of components when data pre-processed by SNV 

(model 8) was used compared to the iPLS model using data that was not pre-processed (model 7). 

Interestingly the noise reduction due to the pre-processing step had a more pronounced effect on the 

model statistics in iPLS than in the PLS models that were based on the larger spectral range. 

The iPLS model was based on a combination of the spectral intervals 1,127.2 to 1,333.6 nm, and 

1,525 to 1,634.7 nm. The first range of optimal selected spectra does not correspond to the 

wavelengths normally associated with ammonia, but the selected spectral variable range 1,525 to 

1,634.7 nm lies within the range of 1,510 to 1,650 nm which is associated with ammonia [18]. 

Comparing the modelling parameters obtained from PLS models and the iPLS models it can be seen 

that except for the number of components which are much lower in the iPLS model, the R2 and the 

RMSEP are quite close to each other.  

Thus, based on all the models seen in Table 1, it is indicative that the spectra provided by the 

diffuse reflectance probe can be correlated to the TAN content. The iPLS model based on the data  

pre-processed by SNV gave an R2 of 0.91 and an RPD of 3.39, which is considered a successful  

model [20,21]. Future research is needed to test the probe in-line in the reactor and with an independent 

test set. Comparing this with other reported results; the TENIRS system uses trans-flexion, a 

combination of transmission and reflectance and requires the use of a transmission vial for the 

scanning process [22]. Transmission is usually used for spectral analysis of liquids while solids are 

scanned by reflectance [22]. Since manures and slurries are a combination of both liquids and solids, 

the inclusion of both transmission and reflectance could be an important factor for the R2 of 0.98 in the 
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TENIRS experiment. One disadvantage of using a transmission vial for the measurements is that it is 

susceptible to clogging and to the formation of deposits. These lead to inaccuracies, due to a change in 

the transmission path length which is vital to the calculations involving the received signal. The diffuse 

reflectance probe does not have this problem.  

High VFA concentrations cause inhibition, as the methanogens are sensitive to pH changes. 

Changes in VFA concentration is also indicative of process imbalances, as any inhibition of 

methanogens will lead to VFA accumulation. Previous studies using the diffuse reflectance probe in an 

anaerobic digester have shown that it can also be used to predict the VFA concentrations [8,9] and can 

thus be used to monitor VFA along with TAN. Apart from a monitoring system that could indicate 

inhibitory levels of TAN content, the NIR probe could also be used to screen manure based substrates 

for their TAN contents prior to loading into the reactor thus preventing the risk of inhibition. It can be 

used to maintain an optimum C/N ratio, between 20/1 and 30/1, which is another way of preventing 

ammonia accumulation and improving digester performance [23]. The use of NIR in predicting the 

amount of TAN will also aid in feed input management especially while dealing with feedstock that is 

high in protein and TAN content. In a previous study, NIR spectroscopy has been used to predict the 

biochemical methane potential (BMP) of meadow grass based substrates [24]. If further studies 

indicate that the diffuse reflectance probe can be calibrated to predict the BMP of manure based 

substrates, the probe could serve multiple purposes in the process control of anaerobic digesters.  

4. Conclusions  

The models obtained were successful and thus the diffuse reflectance probe is promising as an 

online ammonia monitoring tool for materials such as manure and digestates from anaerobic digesters. 

Based on the spectra obtained from the probe, PLS and iPLS gave similar models, except iPLS used 

lesser number of components indicating a more robust model. Pre-processing of the data also reduced 

the number of components in the models when compared to models that were based on raw data. 

Selecting the correct range of spectra that would be used in the model, however, proved to be very 

important in this process.  
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Report  

Optimizing the sample presentation method - (unpublished data) 

The experiment: 

A small experiment was carried out to see if the sample (digestate in this case) 

presentation method used in Paper 2 could be improved upon. A few of the manure 

samples that were used in Paper 2 were selected at random and scanned in different ways. 

Each scanning was repeated 5 or 10 times. Then these 5 or 10 replicate spectra were 

analysed using PCA. The replicate scans of the same sample tend to lie very close to each 

other on a score plot obtained from PCA. PCA is mainly used to detect the main variations 

and if the same scanning method is used on a particular sample then the variation between 

the different scans should be very low and hence the points representing those scans 

should lie very close to each other on a PCA plot. LatentiX software ver. 2.00 was used for 

the PCA analysis. In all cases the samples were brought to a temperature of 20°C (±2°C) 

before scanning to minimize the effects of the temperature change. The depth of the tip of 

the probe into the sample was kept constant, ensuring that the sample in front of the probe 

was at least 2 cm thick. The probe collects information from material that is within 2 mm 

of its tip, but 1 cm is recommended as a safety margin (102). 

The various factors that were thought to affect the scans were: 

1. Day to day changes; A sample was scanned on two consecutive days to see if there 

was a change  

2. Changing the speed of mixing: Two mixing speeds; 80 rpm and 120 rpm were used 

to see if reducing the speed influenced the scatter. 

3. Scanning an undisturbed sample at the upper and lower strata: Complex samples 

that contain particles of mixed size such as manure and digestate tend to settle over 

time forming an upper stratum with very few large particles (especially in case of 

digestates) and the lower strata with larger settled particles. Scanning in the upper 

strata could reduce some of the scatter effect, and scanning in the lower strata 

should produce a larger scatter effect compared to the upper strata. The distinction 

between upper and lower strata was purely on the basis of visual observation. The 

opaque part of the sample was considered as the lower strata. 

4. Another possibility was to mix the material and then scan every minute for a total 

period of ten minutes while allowing the settling to continue or to scan after mixing 

for 30 seconds and letting the particles settle for precisely 1 minute and then scan 

for each repetition.  
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Results: 

1. Day to day changes: The first principal component easily separated the scans 

according to the day they were scanned although the same sample was used (Figure 

A. 1). One reason could be due to sample degradation over the two day period of 

scanning, but the degradation would be minimal as the sample was refrigerated 

between the scans. Nevertheless, there is a variation and one way of building this 

variation into a model would be to scan the samples on at least three different days 

and then use the averaged spectra to build the model. 

 

Figure A. 1: Day to day variation. The scans from day 1 are in dark blue while the scans from day 2 are 
in dark red. 

2. Changing the mixing speed: There was no clear distinction between the two mixing 

speeds (Figure A.2).  

 

Figure A. 2: Mixing speed at 80 rpm is represented in dark blue while 120 rpm is represented by points 
in dark red. 
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3. Scanning an undisturbed sample, upper and lower strata: Figure A.3 shows a clear 

difference in the scans done at the upper strata and those done in the lower strata. 

As expected, the large amount of settled particles in the lower strata induces more 

scatter effects and thus the points are scattered in the plot. The scans in the upper 

strata however are grouped together and indicate much less scatter effects than the 

lower strata. 

 

Figure A. 3: Scans performed on the upper strata are in dark red, while those in dark blue represent 
scans in the lower strata. 

4. Effect of mixing and settling: The mixing and settling method resulted in grouping 

that was much better than that of the lower strata but not better than the upper 

strata scans (Figures A.4 and A.5). 

 

Figure A. 4: The green and orange are the samples that were mixed and then allowed to settle. Dark 
red points represent upper strata and the dark blue is for the lower strata 
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Figure A. 5: Difference between the mixing types and scans in the lower strata. Dark blue represents 
the lower strata, yellow and dark red represent mixing and then settling.  

The results from this preliminary test show the importance of sample presentation. In 

conclusion, the best grouping was with the samples scanned in the upper strata of the 

undisturbed sample (Figure A.3). But this condition is difficult to emulate in anaerobic 

digesters where the contents have to be mixed to ensure good contact between the 

microbial population and the substrate, especially in case of CSTRs. The next best option 

was to mix and allow the solids to settle for a while before scanning (Figures A.4 and A.5), 

this can be recreated in a large scale reactor (Figure A.6) where samples can be run out of 

the reactor in pipes as described in (47). The sample can be pumped through the pipe for a 

period long enough to remove any remnants of old samples in the pipe. Instead of the 

vertical option described in (47), the NIR probe can be affixed to a horizontal portion of the 

sampling pipe where the fresh sample can now be allowed to settle for a short while and 

then the relatively clear upper strata can be scanned by the NIRS. But, this method is 

difficult to define with precision, as settling times with substrates such as digestate is 

hardly ideal and vary depending on a lot of factors.  
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Figure A. 6: An NIR - diffuse reflectance probe affixed to a pilot-scale scale reactor. 
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