Tilting\Plate and Bending\Arches: Shape-Changing Interfaces as Expressive Forms

Morten Winther
IT University of Copenhagen
Copenhagen, Denmark
mwla@itu.dk

ABSTRACT
How can designers gain a better sensibility for designing more sensory engaging and aesthetically pleasing objects as well as for the expressive richness and potentials of shape-change? The two exploratory prototypes, Tilting\Plate and Bending\Arches, investigate the visceral, aesthetic dimensions of shape-changing interfaces. While shape-change is currently receiving a lot of attention in Human–Computer Interaction (HCI) and interaction design, less attention has been given to the expressive qualities of such interfaces. The prototypes presented here focus on the immediate, aesthetic potentials of shape-change and illustrate the expressive diversity and richness of actuation. Aesthetic explorations can also help to identify radically new applicational uses of shape-change as a design modality.

Author Keywords
Shape-changing interfaces; Interaction design; Aesthetic interactions; Expressive forms

ACM Classification Keywords
B.4.2 Input/Output Devices; F.m MISCELLANEOUS

INTRODUCTION
Objects with the ability to change their physical shape are receiving increased attention due to their new potentials for design. However, current research in shape-changing interfaces is primarily dominated by functionality and technological advancements [cf. 3]. But instead of exploring shape-change as yet another technology for efficiency and utility, this work seeks to propose an alternative path, which entails a sensibility for the aesthetic potentials of actuation. Thus, the two prototypes presented here approaches shape-changes as expressive forms to draw attention to the immediate and sensory qualities of shape-changing interfaces, which is still a rather under-explored domain [3,4]. In this sense, the prototypes are the beginning of an aesthetic inquiry into better understanding the visceral, expressional dimensions of actuation as a design modality:

“Forms, either abstract or concrete always carry meanings. It is the responsibility of the designer to make good use of these meanings, for example to make products beautiful, exploiting all the sensorial aesthetic languages, to stress the importance of certain values, or to improve a product’s ease of use to create and facilitate richer experiences” [1].

The purpose of the prototypes is to bring attention to a need for design literacy about the expressive means that designers have available to attend to the visceral meanings within shape-changing objects and to argue for attention to the radically new possibilities they hold.

DESCRIPTIONS OF THE PROTOTYPES
What is the expressional diversity that can be created with steel as the main material and two motors as actuators? This is the specific question that the prototypes seek to answer. The scope of the two prototypes is to explore the diversity of contrasting expressions that can be made based on the basic design principles of steel as the main material and two motors as each of the prototypes’ actuating technology.

Figure 1. Tilting\Plate has a rigid surface plate that can move around two axes of symmetry
Almost seems to be floating, tilting shapes motors, while forms crossbar. Independently control the end of the crossbar driven by stepper motors actuators inside the steel base two. Each relaxation of the arches. More the arches bend. Bending Prototype 2: through abstract gestures used to monitor the space immediately above. Tilting Prototype 1: connected to the top. Plate is a 60x60x30 cm steel box. Its top plate is connected to a frame with two bolts. This frame is, in turn, connected to the steel box, also with two bolts (figure 1). This makes it possible for the top plate to rotate around one axis of symmetry, and for the frame to rotate independently around a second axis perpendicular to the first axis. Two servomotors are used to tilt the angular positions of the inner plate and the frame respectively. The motors are controlled with an Arduino board. As input, a Kinect is used to monitor the space immediately above Tilting Plate. Within this space, users can interact with the prototype through abstract gestures.

Prototype 2: Bending Arches
Bending Arches consists of ten pieces of flexible steel, which are fastened onto a 67x50x7 cm steel base (figure 2). Bending Arches reacts to sound; the louder the sounds, the more the arches bend. A quieter soundscape results in relaxation of the arches.

Each of the arches is connected to an inside crossbar. The two ends of the crossbar are then attached to two linear actuators inside the steel base. These two actuators are driven by stepper motors and are used to pull down each end of the crossbar. This way it is possible to control the slope of the crossbar, which results in the shape-changes in the prototype. As such, the individual arches cannot be independently controlled, but follows the slope of the crossbar.

SHAPE-CHANGING INTERFACES AS EXPRESSIVE FORMS
While both prototypes have been made from steel and two motors, their expressions are quite diverse. The planar shapes in Tilting Plate give it a more uniform and rigid expression, whereas Bending Arches has a flexible and softer aesthetic. The qualities of the dynamics in Tilting Plate are its fluid movements, where the plate almost seems to be floating, because the inner plate and the frame are able to move independently. Bending Arches, on the other hand, is characteristic in the way it goes from a uniform surface in its relaxed state to a complex, uneven surface when the arches are bent. As such, the dynamic qualities of Tilting Plate stem from its continuous movements, whereas in Bending Arches they stem from the transformations between its expressional diverse states.

With their leitmotif “function resides in the expression of things”, Hallnäs and Redström [2] have advocated for not only defining an object’s form based on its functionality, but to use form explorations to help discover new applications. In this sense, an aesthetic approach to shape-changing interfaces will not merely improve design literacy about their visceral expressions, but can also pave the way for radically new uses of actuation. Perhaps Tilting Plate could be appropriate for visualizing balance or indicating states of equilibrium. The dynamic permeability of the surface in Bending Arches could, for instance, be used for controlling the inflow of light. As such, different expressive forms allow for different potential uses, which can allow for new and more aesthetically pleasing types of objects.

As illustrated here, the two prototypes exemplify the expressional richness of shape-changing interfaces through rather contrasting expressions made from the same basic principles. The purpose of the prototypes is to draw attention to this richness and the aesthetic potentials of actuation as a design modality. However, it is not a matter of if shape-changing interfaces should encompass aesthetic dimensions, but rather how qualified we deal with the expressions of such objects. As designers, we must be aware of the expressive means we can use when designing with actuation to create sensory stimulating and engaging experiences. Furthermore, we must use appropriate shape-changing modalities to support desired functionalities and uses. Aesthetic explorations of shape-change seek to improve design literacy to help designers make better design decisions for shape-changing interfaces.

REFERENCES