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To the memory of Professor Simon Goodchild,  
a respected educator and a wise friend

“Whereas the limits of human understanding are  
strictly confined, there are no limits to human  
misunderstanding” (Nicolson, 1947, p. 113). 

For many decades, “biology education is burdened by habits from a past 
where biology was seen as a safe harbor for math-averse science students” 
(Steen, 2005, p. 14). A cultural gap between biology and mathematics 
students is often established by high school: “what attracts students to 
mathematics, physics, and engineering tends to repel students who are 
interested in biology” (Chiel et al., 2010, p. 250). This division remains a 
fundamental obstacle that must be overcome because today “mathemat-
ics has become pervasive in biology” (May, p. 790). The attitude of biolo-
gists towards the use of mathematics in research and teaching has been 
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rapidly changing: they acknowledge that understanding of mathematics 
enriches and improves biological understanding and that “mathematics 
is a forgotten tool that we should use” (Ortiz, 2006, p. 461).

A continuously growing need for quantitatively literate biology gradu-
ates requires reform in the mathematics education of future biologists. 
Although Ortiz (2006) suggested that mathematics can be integrated 
into the explanation of the most basic biological concepts, Karsai and 
Kampis (2010) warned that introducing more mathematics to biology stu-
dents would not, by itself, solve the problem of quantitative literacy and 
conceptual understanding. They stressed that students should under-
stand science before they start learning applications of mathematics in 
science suggesting that “the strongest effect of math on biology education 
will be the extensive use of models and simulations” (p. 636). In fact, “in 
some ways mathematical modelling could serve as a prototype for inter-
disciplinary mathematics education” (Ferri & Mousoulides, 2018, p. 905). 
However, for biology students the learning of mathematical modelling 
can be hindered by epistemological differences between the two disci-
plines, succinctly described in Lior Pachter’s blog (2014): “biologists draw 
figures and write papers about them. Mathematicians write papers and 
draw figures to explain them. […] The extent to which the two cultures 
have drifted apart is astonishing”.

Pointing to cultural and epistemological differences between biology 
and more quantitatively oriented sciences, Chiel et al. (2010, p. 249) 
stressed that “in general biology students and faculty have a ‘different 
way of knowing’ than students and faculty in mathematics, physics, and 
engineering”, which is directly related to the ways they are trained. Biolo-
gists (i) emphasise the importance of biological terminology in communi-
cation; (ii) tend to know all the details of a complex biological system and 
use them for as long as possible; and (iii) face difficulties with the quan-
titative articulation of qualitative models of complex biological systems. 
In contrast, the training of mathematics, physics, and engineering stu-
dents focuses on the design of simplified descriptions for complex real-
life systems, followed by their analytical analysis and numerical simula-
tions. Methodological approaches differ: in mathematics, assumptions 
are made and theories are laid out explicitly; results are established ana-
lytically, mainly by proof, whereas biologists search for “evidence to 
present the claim of a hypothesis beyond reasonable doubt” (Karsai & 
Kampis, 2010, p. 636). Distinctions are also observed in the perspectives 
of the two communities on mathematical modelling (Rogovchenko & 
Rogovchenko, 2024).

Although mathematical modelling is viewed as one of the most effi-
cient formats for teaching biology students mathematical ideas that can 
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be directly applied to exploring complex biological systems, many con-
ceptual and technical difficulties may be encountered. Chiel et al. (2010) 
emphasised students’ struggle with understanding “how the specific com-
ponents of the actual biological system are mapped into the mathemati-
cal descriptions”, which includes “initial conditions, state variables, and 
parameters” and “the significance of the terms within the model equa-
tions.” Other obstacles are related to “the actual implementation of the 
model” and “conceptual difficulties with nonlinear dynamical systems 
theory, which is often used for analyzing biological models” (p. 260).

In addition to traditional difficulties with mathematical subjects faced 
by biology students, even more confusion may arise when mathemat-
ics lecturers include applied, biologically meaningful tasks in lectures 
and seminars without considering all subject-related particularities. It 
is common for mathematicians to omit non-essential details, promptly 
proceeding to an abstract model or starting with it. As a result, students 
“may easily survive in mathematics without the effort of careful reading 
and understanding given mathematical tasks cast in an extra-mathemat-
ical context” (Niss & Blum, 2020, p. 116). Empirical research has demon-
strated that the mathematisation part of a modelling cycle is particularly 
difficult for students (Blum, 2011; Jankvist & Niss, 2020; Niss, 2017; Niss & 
Blum, 2020; Stillman et al., 2010; Viirman & Nardi, 2019). Niss and Blum 
(2020) stress that students should possess both sufficient mathematical 
knowledge and “a fair amount of extra-mathematical knowledge, … espe-
cially when undertaking pre-mathematisation, de-mathematisation, val-
idation and evaluation” (p. 92). They emphasised that understanding and 
correct interpretation of a given modelling task requires, in addition to 
general language proficiency, mathematical communication competency, 
which is crucial for “translating specific extra-mathematical concepts 
and relations into mathematical entities, or interpreting mathematical 
objects in extra-mathematical contexts” (p. 92).

If a modelling problem is set in a science context and uses terminology 
that has multiple, context-dependent interpretations in different STEM 
disciplines, students’ difficulties may substantially increase. Our interest 
in this important aspect of mathematics education for future biologists 
grew during an extra-curricular teaching experiment with a group of 
biology undergraduates at a large Norwegian university (Rogovchenko, 
2021). We noticed that significant differences in the interpretation of 
the notion of population density in biology and mathematics affected 
students’ reasoning (Rogovchenko & Rogovchenko, 2023). In this paper, 
we address the problem of semantic differences between the ways math-
ematicians and biologists interpret basic terminology in standard math-
ematical modelling tasks. We examine several widely used biology and 
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mathematics texts, focusing on differences in the comprehension of the 
terms population density and carrying capacity across the two disciplines 
and the possible influence of distinct perceived meanings on students’ 
work on modelling tasks. The research question we address in this paper 
is: How do semantic differences between biology and mathematics impact 
students’ reasoning in modelling tasks?

Scientific communication and terminology
Research in biology and other empirical sciences is often accompanied 
by ambiguity and guided by intuition; scientific discoveries frequently 
require the recognition and characterisation of phenomena that are yet 
unknown. Communicating half-formed, unsettled ideas demands par-
ticular attention to vocabulary because “for scientific discussions it is 
necessary to clearly define the terms used. Otherwise, scientific state-
ments are open to interpretation and remain unclear which hampers 
scientific progress” (Langer, 2018, p. 230). Although it is widely accepted 
that conceptual understanding and the use of correct scientific language 
are intimately linked (Ausubel et al., 1978; Novak, 1977; Wandersee, 1988), 
the importance of language in scientific education is often overlooked 
(Wellington & Osborne, 2001). Wandersee (1988) argued that “scientists 
use terminology to precisely communicate their findings to other scien-
tists. Students are taught such terms in order to understand important 
scientific concepts and principles, to become scientifically literate, or to 
lay a foundation for further learning in the sciences” (p. 97).

Vygotsky (1986) emphasised the close connection between thinking 
and language, communication and understanding, positing that

[W]e all have reasons to consider a word meaning not only as a union 
of thought and speech, but also as a union of generalization and 
communication, thought and communication. The conception of 
word meaning as a unit of both generalizing thought and social 
interchange is of incalculable value for the study of thought and 
language (p. 9).

He stressed that word meanings change, and concept formation is a crea-
tive intellectual process that evolves through engagement in communica-
tion, understanding, and problem-solving (p. 55). With the rapid advance-
ment of science and new research discoveries, definitions of concepts 
may be revised to reflect new knowledge. Both researchers and students 
should keep their scientific vocabularies updated to ensure meaningful 
communication and mutual understanding. This may not be easy across 
different STEM disciplines, and “conceptual understanding may accord-
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ingly suffer when language learning is not supported” (Zuckswert et al., 
2019, p. 2).

Historically, interdisciplinary research between biologists and chem-
ists or physicists has been facilitated by the use of similar methods and 
language. Biology shares 39% of its vocabulary with chemistry, 25% with 
physics, and 16% with psychology (Benjafield, 2020). Bartholomew (1986) 
argued that due to the rapid fragmentation of biological research and the 
development of niche expertise

their vocabularies, their techniques, and the questions they consider 
important differ so much that it is difficult for biologists in widely 
separated fields to remember that they are all trying to understand 
the same thing – the nature of living systems (p. 325).

This narrowing specialisation impacts undergraduate biology education, 
making the correct use of discipline-specific vocabulary challenging for 
students (Wandersee, 1988; Zuckswert et al., 2019). Biology programmes 
are notorious for their vast vocabulary, much of which “is technical, 
unintuitive, ambiguous, or abstract, and so it may be considered ‘jargon’, 
especially by a novice in the field” (Zuckswert et al., 2019, p. 2). Techni-
cal vocabulary typically used in biology classes includes both specialised 
terms that would not be used outside the field and terms used in everyday 
language. Difficulties in understanding an unintuitive scientific vocabu-
lary are amplified by frequent misinterpretation of common terms that 
have different context-dependent meanings across STEM disciplines. 
Marshall et al. (1991) noticed that students struggle with frequently used 
non-technical terms that do not represent complex notions but have 
multiple interpretations in everyday and scientific communication; this 
results in “the high number of mismatches in actual understanding 
versus perceived understanding” (Zuckswert et al., 2019, p. 8).

Given that “the interaction of mathematics with science has never 
been smooth […] because mathematics and science have significantly dif-
ferent roots and approaches” (Karsai & Kampis, 2010, p. 635), mediation 
between the disciplines should be based on correct interpretation and 
unambiguous use of basic scientific terminology by mathematicians. 
Semantics, known as the “science of meaning, or the study of signifi-
cance” (Lady Welby, as cited in Iacobelli, 1948, p. 16), examines how an 
appropriate symbol (word or phrase) is associated with a referent (an 
actual object or thing). This mapping is achieved through the reflective 
thought process that occurs in our brains because “there is no direct rela-
tion between referent and symbol, between thing and word” (Iacobelli, 
1948, p. 16). Consequently, a productive academic discussion can only be 
carried out by acknowledging that “the understanding of the significance 
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of words, and a realization of the flexibility of words, are the fundamen-
tal factors which govern the attainment of good communication” (Iaco-
belli, 1948, p. 16).

The need to correctly interpret multivalent terms that have several, 
often conflicting, contextualised meanings complicates the learning of 
mathematical modelling by science students. For instance, the term cell 
has different meanings in biology, meteorology, chemistry, mathematics, 
and nucleonics (Wandersee, 1988). In biology, a cell designates the funda-
mental unit of life. In mathematics, it may refer to a three-dimensional 
object that is part of a higher-dimensional object or a fundamental spatial 
unit in a cellular automaton. In mobile communication, a cell is a geo-
graphical area covered by the frequency emitted by a base station in a cel-
lular network, but it also stands for a small room in a prison in everyday 
language. For evolutionary biologists, the term function mainly relates to 
selection; most molecular geneticists and biochemists associate it with a 
molecule’s activity; mathematicians use it to relate elements in two sets, 
and in everyday language, it is associated with a number of concepts 
ranging from professional occupation to a purpose for which a device 
has been designed (Keeling et al., 2019). The term limits arises in the 
evolution of the form of different animal groups to describe functional 
and developmental constraints on possible evolutionary trajectories in a 
morphospace of hypothetical forms (McGhee, 2015). In mathematics, it 
designates values approached by functions when the independent vari-
able tends to certain finite or infinite values. The list of terms with mul-
tiple meanings includes scores of words like accumulation, complement, 
consistent, etc., interpreted differently in biology, mathematics, and eve-
ryday life. Sometimes the context helps to understand the meaning of a 
term unambiguously, but this is not always the case.

Semantic difficulties may also lead to the misinterpretation of impor-
tant mathematical concepts that biologists and other empirical scientists 
use in their experimental work. The concepts of correlation, necessity, 
and sufficiency are important for designing experiments in biochemistry 
and cellular biology (Coleman et al., 2015). Insufficient training and lack 
of relevant reasoning skills could hinder students’ ability both to under-
stand and correctly interpret experiments reported in the literature and 
to design their own experiments. Yoshihara and Yoshihara (2018) warned 
about the danger of “an incorrect use of logic which involves the careless 
application of the ‘necessary and sufficient’ condition originally used in 
formal logic. This logical fallacy is causing frequent confusion in current 
biology, especially in neuroscience” (p. 53). Last but not least, some fun-
damental concepts like carrying capacity have multiple, not fully com-
patible interpretations even within the field of biology (Hixon, 2008).
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Carrying capacity and population density: biologist’s views
Carrying capacity is an important biological concept used to under-
stand interactions between the biotic potential of a population and 
environmental resistance (Wisniewski, 1980). It is often defined as the 
maximum population size that a given environment can support indefi-
nitely. However, “the simplicity of this definition belies the complexity 
of the concept and its application. There are at least four closely related 
but nonetheless different uses of the term in basic ecology, and at least 
half a dozen additional definitions in applied ecology” (Hixon, 2008, p. 
528). The term carrying capacity is often attributed to the variable K in 
the logistic equation introduced by Verhulst (1838), even though he never 
employed it (Sayre, 2008). Prior to its adoption in biology in the 1870s, 
the term was introduced in mechanical engineering for calculating the 
load that a steamship could carry (Sayre, 2008); it initially retained its 
literal application, referring to the mass of meat that pack animals could 
physically transport (Chapman & Byron, 2018, p. 2).

In his influential treatise on ecology, Odum (1953), contrary to con-
temporary views on carrying capacity as ‘an upper limit of population 
growth’ or ‘a maximum population size possible’, assigned the term to the 
asymptote of the logistic curve (Sayre, 2008). According to Wisniewski 
(1980), “the implications of this subtle but profound difference in con-
ceptualization of carrying capacity for unwary human ecologists cannot 
be overstated” (p. 56). This new interpretation aligned well with math-
ematicians’ views on the asymptotic behaviour of solutions to the logistic 
differential equation but, lacking empirical support, created confusion 
in biological literature (Wisniewski, 1980) and undoubtedly influenced a 
generation of biologists (Chapman & Byron, 2018). In the third edition of 
his textbook, Odum (1971) acknowledged that in reality “almost always 
the population overshoots the upper asymptote and undergoes oscilla-
tions before settling down at the carrying capacity level” (p. 185). Sayre 
(2008) commented on the complicated nature of this issue, arguing that 
“if carrying capacity is conceived as static, it is theoretically elegant but 
empirically vacuous; but if it is conceived as variable, it is theoretically 
incoherent or at best question begging” (p. 131). Despite these weaknesses, 
carrying capacity remains an important construct for many ecological 
studies, including basic fisheries and wildlife yield models (Chapman & 
Byron, 2018; Hixon, 2008; Sayre, 2008; Wisniewski, 1980).
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Let us now explore how the concepts of carrying capacity and population 
density are presented in three popular textbooks for biology undergradu-
ates. Tortora et al. (2021) explain the process of binary fission, a form of 
asexual reproduction in which a single parent cell divides to produce two 
daughter cells, each inheriting one copy of the genetic material from the 
parent cell. Bacterial growth over time has four basic phases: lag, log, sta-
tionary, and death (see figure 1). During the lag phase, intensive metabolic 
activity occurs, but no increase in population is observed. During the 
logarithmic (exponential) phase, cells are most metabolically active, and 
binary fission in bacteria or mitosis in yeasts takes place. If binary fission 
continued unchecked, an enormous number of cells would be produced. 
However, during the stationary phase, bacterial growth slows due to envi-
ronmental constraints; production of new cells is balanced by microbial 
deaths. “Exponential growth stops because the bacteria approach the 
carrying capacity, the number of organisms that an environment can 
support” (Tortora et al., 2021, p. 194, emphasis in original). Factors influ-
encing carrying capacity include the availability of nutrients, space, and 
the accumulation of waste. When the number of deaths exceeds the 
number of new cells produced, “the population enters the death phase, 
or logarithmic decline phase” (Tortora et al., 2021, p. 194, emphasis in 
original). For understandable reasons, the concept of population density 
is not discussed in the microbiology textbook.

Miller and Harley (2001) characterise animal population changes over 
time either in terms of survivorship curves (plots of the number of sur-
vivors versus age) or in terms of population growth (plots of the number 
of organisms versus time). They argue that exponential growth cannot 
continue indefinitely due to environmental resistance factors (climate, 
food, space), and population growth is referred to as logistic: “the popu-
lation size that a particular environment can support is the environ-

Figure 1. Four phases of bacterial growth over time.
Michal Komorniczak/Wikimedia Commons/CC BY-SA 3.0
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ment’s carrying capacity and is symbolized by K” (pp. 77–78). Logistic 
growth curves have a sigmoid, or flattened S-shape, reflecting the effect 
of limited resources placing an upper limit on population size. The 
number of organisms approaches the limiting value K asymptotically, 
but “during its exponential growth phase, a population may overshoot 
carrying capacity because demand on resources may lag behind popu-
lation growth” (Miller & Harley, 2001, p. 78). The number of organisms 
may cycle on either side of K, or form a J-shaped curve, overshooting the 
carrying capacity and approaching it asymptotically from above (Camp-
bell et al., 2021, figure 53.10, p. 1257; cf. Odum, 1971). Density-independent 
factors (climate, human activities, natural disasters) affect populations 
regardless of the number of individuals per unit space, whereas density-
dependent factors (competition for space and food resources, disease, 
predation) have a more pronounced impact at higher population densi-
ties (Miller & Harley, 2001).

Population density is often used in biology as a measure of an organ-
ism’s response to local conditions. It is low if conditions are unfavourable 
and organisms die or emigrate, but if conditions are favourable, density 
is high and organisms reproduce and immigrate into the area (McArdle, 
2013). Density can serve as a substitute for population size, an impor-
tant variable for ecologists, but the link between population density and 
population size is not always direct. If the area to be sampled includes the 
entire population, density multiplied by the area gives total population 
size, as in mathematics. Biologists regard density as a reliable proxy for 
population size in scenarios of constrained range (e.g., on islands), but in 
most cases it merely reflects the number of organisms within a defined 
study area (McArdle, 2013).

Campbell and Reece (2005) discuss the relationship between popula-
tion dynamics and density, defined as the number of individuals per unit 
area or volume (p. 1137; cf. Campbell et al., 2021). Sampling techniques are 
employed to estimate population densities and total population sizes, the 
most popular being the use of several randomly located plots and extrapo-
lation to the entire area, and the mark–recapture method. Campbell and 
Reece (2005) emphasise that density is not a static property of a popu-
lation and is influenced by birth, death, immigration, and emigration. 
Dispersion (the pattern of spacing among individuals) accounts for sub-
stantial variation in local densities within population boundaries. The 
most common dispersion pattern is clumped (individuals aggregated in 
patches); less common uniform and random dispersion result from direct 
interactions between individuals.

Campbell and Reece (2005) define carrying capacity K as the maximum 
population size that a particular environment can support, emphasising 
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that it is not fixed but “varies over space and time with the abundance of 
limiting resources” (p. 1145). Growth patterns of some laboratory popula-
tions of small animals (crustaceans, beetles) and microorganisms (bacte-
ria, yeast) in a constant environment without predators and competition 
for resources fit a sigmoid curve quite well. However, one of the basic 
assumptions built into the logistic model (that populations instantane-
ously adjust growth rate and smoothly approach carrying capacity) does 
not apply to all populations; in most natural populations, the impact of 
negative changes causing population decline is delayed. A population 
may overshoot its carrying capacity before settling down to a relatively 
stable density (e.g., Daphnia) or fluctuate markedly in response to drastic 
seasonal climate changes (e.g., song sparrow). Thus, “although the logis-
tic model fits few, if any, real populations closely, it is a useful starting 
point for thinking about how populations grow and for constructing 
more complex models” (Campbell & Reece, 2005, p. 1146). The model is 
particularly useful for estimating environmental impact in conserva-
tion biology and aligns well with the presentation of carrying capacity 
in mathematics texts.

Carrying capacity and population density: mathematician’s views
Autonomous differential equations represent an important class of equa-
tions in which the independent variable does not appear explicitly. They 
are often used for modelling population dynamics because the rate of 
change of a population usually depends only on its current size, thus 
making the equations time independent. Two widely used textbooks 
on calculus (Adams & Essex, 2018) and differential equations (Boyce & 
DiPrima, 2013) introduce logistic growth to illustrate applications. Boyce 
and DiPrima (2013) discuss an autonomous differential equation 

in the context of population growth. Under the simplest assumption that 
the rate of change of the population y = φ(t) at each instant t is propor-
tional to the current value of y = y(t), i.e., f(y) = ry, r > 0, the differential 
equation describing exponential growth is obtained:

= f(y)		  (1)
dy
dt

= ry ,		  (2)
dy
dt
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also known as the Malthusian growth model in population dynamics. If 
the rate of change depends on the population size, equation (2) is modi-
fied to the form:

where the function h(y) is selected to behave like r for small values of y, 
and decrease and take on negative values for large values of y. The choice 
of the simplest such function, h(y) = r – ay, where a is also a positive con-
stant, leads to a differential equation:

known as the Verhulst equation or the logistic equation (Boyce & 
DiPrima, 2013, pp. 58–60). Analysing the phase line for equation (4) and 
plotting its solutions, the authors conclude that “K is the upper bound 
that is approached, but not exceeded, by growing populations starting 
below this value. Thus, it is natural to refer to K as the saturation level, 
or the environmental carrying capacity, for the given species” (Boyce 
& DiPrima, 2013, p. 61, emphasis in original; cf. Odum, 1953). Although 
solutions with initial values larger than K approach asymptotically the 
horizontal line y = K from above, this mathematically correct but biologi-
cally unrealistic argument remains unsettled.

Adams and Essex (2018) introduce equation (4) as a possible model 
for describing the growth of a rabbit population, mentioning that such 
models are thought to apply to several species of fish and trees, and revisit 
it later to illustrate applications of integration in business, finance, and 
ecology. Their concise description of (4) refers to the constant K as “the 
natural limiting size of the population – the carrying capacity of its envi-
ronment” (Adams & Essex, p. 434).

Given that both texts refer to the notion of carrying capacity primar-
ily to illustrate mathematical techniques and do not attend to biological 
details, it is not surprising that the concept of population density is not 
discussed. However, from a mathematical point of view, computation of 
population density in simpler cases requires merely dividing the number 
of individuals by the area they inhabit. More sophisticated mathematical 
approaches to the concept of density are based on an implicit assump-
tion of homogeneous mixing (uniform dispersion), which is generally not 
feasible for most populations. Calculus textbooks also explain how one 
can find the total population using a definite integral if a radial density 

= h(y)y ,		 (3)
dy
dt

= r  1 –         y ,	 (4)
dy
dt

y
K )(
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function ρ(r) is known (Rogawski & Adams, 2018, p. 385) or by calculat-
ing a double integral if a multivariable density function ρ(x,y) is given 
(Buono, pp. 198–199). However, these approaches are too distant from the 
realm of biology because populations are usually aggregated in patches 
(Campbell & Reece, 2005) and, to our knowledge, neither biologists nor 
mathematicians can efficiently compute a radial density function ρ(r) 
or a multivariable density function ρ(x,y) for finding population density 
via integration.

Analysis of students’ work on mathematical modelling tasks
We analyse students’ work on two modelling tasks offered to a group of 
twelve biology undergraduates (nine female and three male) at a large 
Norwegian university, focusing primarily on discipline-dependent 
semantic aspects in small-group discussions. At the time of the teaching 
experiment, eleven students were enrolled in a large first-year mathemat-
ics course for natural science students, and one second-year student had 
already completed it. All students had no previous modelling experience 
and volunteered to take part in four three-hour extra-curricular model-
ling sessions led by the second author, signing a consent form prior to 
participation. The main goal of the teaching experiment was to intro-
duce students to simple modelling techniques relevant to their profes-
sion and motivate them to take further mathematics courses beyond the 
compulsory one.

In each session, fundamental ideas and techniques (such as a seven-
step modelling cycle, compartmental models, choice of variables and 
parameters, assumption-making, and modelling using geometric simi-
larity) were explained and illustrated with examples. Similar problems 
were suggested for independent work in small groups of three to five stu-
dents. For more details on the organisation of the experiment, see Rogov-
chenko (2021). Since students were offered only minimal support, their 
discussions “represent students’ unscaffolded, decontextualized ideas 
about models and do not reflect what students can do with models in 
more supportive or appropriately contextualized settings” (Svoboda & 
Passmore, 2011, pp. 18–19).

Problem A: Rabbits on the road
The task “Rabbits on the road” (Harte, 1998, pp. 211–213) was given in the 
first session after students were introduced to the modelling cycle and 
some simple models. Our goal was to explore how they might approach 
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an open-ended modelling problem and relate it to their previous experi-
ence in biology and mathematics.

Problem A. Driving across Nevada, you count 97 dead but still easily 
recognisable jackrabbits on a 200-km stretch of Highway 50. Along 
the same stretch of highway, 28 vehicles passed you going the oppo-
site way. What is the approximate density of the rabbit population 
to which the killed ones belonged?

Problem A turned out to be challenging for students since it was the 
first time they encountered an open-ended problem requiring multiple 
assumptions. This aspect caused difficulties: on the one hand, students 
often focused on biological arguments that would not typically be con-
sidered by a mathematician; on the other hand, they did not attempt 
to make other biologically meaningful assumptions. For instance, one 
student recalled the mark–recapture method used in fisheries (catching, 
tagging, releasing, and recapturing fish to estimate population size) and 
asked whether this method could be applied to Problem A.

The solution to the problem suggested by the author, an ecology pro-
fessor, combined mathematical and biological reasoning (Harte, 1998, pp. 
211–213). He assumed that:

(A1) The rabbit population inhabits land of area A = 200 w (km)2, 
with width w on both sides of the highway along the entire 200-km 
stretch, so that the density of this population is:

where K is the highway kill rate (number of rabbits per day), R is 
the size of the rabbit population, n is the average number of road 
crossings per unit time attempted by each rabbit, and r is the likeli-
hood of a rabbit being run over during an attempt to cross the road.

(A2) Rabbits hop randomly about their habitat for 1 hour per day at 
a speed of s km/day. Thus, they cover about 0.04 s km/day and, very 
roughly, cross the road n = 0.04 s / w times per day.

Problem B: Growth of a yeast culture
The second task, “Growth of a yeast culture”, was adapted from a model-
ling textbook (Giordano et al., 2014, pp. 10–13) and suggested in the second 
session. Unlike the open-ended Problem A, this task was partly math-
ematicised and split into several steps. The goal was to explore how, with 

 rabbits per (km)2,
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some guidance embedded in the problem, students could relate experi-
mental data and a simple mathematical model, assess its efficiency and 
predictive power, and recognise the need for model adjustment.

Problem B. The data in table 1 describe the growth of a yeast culture 
versus time in hours and come from Pearl (1927).

(a) 	Analyse the numerical data in table 1 (left panel). Plot the data 
and analyse the graph. Suggest a simple model based on a dif-
ference equation of the form:

where pn is the size of the yeast biomass after n hours, Δpn is 
the change in biomass between two measurements, and k1 is a 
positive constant. What would be your expectations regarding 
the predictive power of the model you constructed? Explain.

(b) 	Analysing the data in table 1 (right panel), note that the change 
in population per hour decays as resources become limited. Plot 
the population against time and explore the shape of the graph. 
What would you expect in the long run? Based on the graph, 
observe that the population approaches a limiting value, known 
in biology as carrying capacity. What would be your expected 
value for carrying capacity in this case?

(c) 	Estimating carrying capacity to be 665 (this value is approx-
imate; your estimate may differ slightly), adjust your simple 
linear model by replacing it with a nonlinear model:

Test the new model by plotting Δpn against (665 – pn)pn to check 
whether a reasonable proportionality is observed and estimate 
the proportionality constant k2.

Table 1. Growth of a yeast culture versus time in hours (Pearl, 1927).

Δpn = pn+1 – pn = k1pn

Δpn = pn+1 – pn = k2(665 – pn)pn
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The authors’ solution (Giordano et al., 2014, pp. 11–13) focused on plot-
ting Δpn versus pn and (665 – pn)p, followed by fitting straight lines to the 
data to determine the proportionality constants k1 and k2. Plotting the 
change of biomass versus biomass rather than biomass versus time was the 
most difficult part for students, as they had no prior experience with 
such tasks. On the other hand, they had been taught at school how to use 
linear regression to fit a straight line to a data set, but they did not relate 
this knowledge to the task at hand.

We illustrate students’ reasoning with six excerpts from small-group 
discussions, paying particular attention to the interpretation of the con-
cepts of population density and carrying capacity, which are crucial for 
the correct understanding and solution of the problems.

Episode 1 (Group 1: meaning of population density)
1 	 S1: 	 Now we answer the wrong question; they ask about “What is the 

approximate density.” They ask about density here. Density per 
square mile then, right?

2 	 S2: 	 On the stretch. […]
3 	 S3: 	 Yes, but we first have to sort of find the population and then we have 

to find, take an area and take the density...
4 	 S2: 	 If it is 20,000 per 200 km, if we only make it into the area. […]
5 	 S3: 	 No, but let us just assume, as she says, that we have 20 miles that way 

and 20 miles that way, then we have 20 miles on the stretch.
6 	 S1: 	 Yes.
7 	 S3: 	 But then there is still a very large area, for only 20,000 rabbits.
8 	 S1: 	 Yes, I think, I do not know if this is what they mean by density. There 

is no point in calculating density per hypothetical square kilometre.
9 	 S2: 	 You never know how big it is as well…
10 	 S1: 	 So, I do not know if that is what they mean by density, or if it’s just 

a part of the population they’re looking for. It’s like “What is the 
approximate density of the rabbit population?”

11	 S3: 	 To obtain density, we have to have the whole area; we cannot use just 
a stretch. You must have something like a square.

12 	 S5: 	 Can’t we just divide the number of individuals in the area and find 
out how many are there in each square metre?

13 	 S1: 	 But we don’t know what the area is; we only know the stretch. We 
don’t know how wide it is.

S1, S2, and S3 discussed the meaning of population density (turns 1-3, 
10), and S1 deemed the calculation of “density per hypothetical square 



rogovchenko and rogovchenko

Nordic Studies in Mathematics Education, 30 (4), 43–66.58

kilometre” (turn 8) meaningless. S5 suggested a straightforward math-
ematical approach (turn 12), but S1 was convinced that the “whole area” 
is needed (turns 11, 13). Note that assumption (A1) was introduced by the 
author (Harte, 1998, p. 212) to conveniently resolve the issue of the area 
inhabited by rabbits. S3 attempted a similar step, mentioning several 
times the area along the stretch of the highway (turns 2, 5, 11). Students 
in Group 1 actively discussed what the total population and percent-
age of killed rabbits could be but did not consider making a simplifying 
assumption for the area.

Episode 2 (Group 2: recalling a sampling method and desperation)
14 	 S4: 	 … but didn’t we have such a bad population, population growth thing 

in biology then? So, to find out the population, you had to first take 
one area, then another, then another, then another…

15	 S2: 	 Yes, and then you took the average.
16 	 S3: 	 I’ll try to find it on Google, what is the rabbit population in Nevada. 

[…]
17 	 S2: 	 Hmmm, this was a frustrating task. You think it’s a math problem, 

but then you know nothing. So, you can’t solve it.
18 	 S4: 	 Yes, we have to, we have to [solve it] somehow. Find our own numbers.

S4 and S2 recalled a sampling technique (turns 14, 15) but were unable to 
apply it to solve the task. S4 also referred to a “bad population” (turn 14), 
presumably associating population density with habitat conditions. We 
believe that students were oriented towards finding the total size of the 
population rather than its density (turns 14–16). Lack of progress eventu-
ally frustrated S2 (turn 17).

Episode 3 (Group 2: likelihood of rabbits being run over)
19 	 S4: 	 Yes, you have to say how many make it out alive, that’s something.
20 	 S2: 	 Yes, not everyone who jumps over there [on a highway] dies.
21 	 S3: 	 I imagine a whole herd of rabbits jumping for all those who are hit, 

but…
22 	 S1: 	 So … if there had been a hundred rabbits jumping out into the road at 

the same time, the twenty-eight cars have also run over ninety-seven 
rabbits, it seems ridiculous. (inaudible) […]

23 	 S1: 	 Well, but it only assumes that the cars are driving towards you, and 
not the cars ahead. So, it’s only [cars driving] on one side then.

24 	 S4: 	 Yes, not the ones driving ahead of you or behind you.
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25 	 S1: 	 Yes, that’s true. But I think that then the rabbits must jump only from 
one side. […]

26	 S4: 	 But should we also assume that all the rabbits that jump across the 
road are hit?

27 	 S2: 	 Not when there are only twenty-eight cars in two hundred kilometres.
28 	 S1: 	 No.
29 	 S4: 	 No, but how many possibly?
30 	 S3: 	 One third.
31 	 S4: 	 A third of the rabbits that jump across the road get hit?

In Group 2, students actively discussed the likelihood of a rabbit being 
run over by a car—an important part of the problem’s solution addressed 
by its author in assumption (A2) (Harte, 1998, p. 212). They debated 
whether all rabbits crossed the road at the same time (turn 22), whether 
the killed rabbits were jumping from only one side of the road because the 
number of cars driving in one direction was given (turn 25), and whether 
all rabbits that cross the road are hit (tuns 26, 27). Failing to formulate 
an acceptable approach to the solution, the students resorted to guessing 
what proportion of rabbits might be run over on a highway (turns 29–31).

Episode 4 (Group 1: plotting exponential growth and using logarithmic scale)
32 	 S3: 	 (plotting the graph) It is going to be beautiful, you know. And then 

there is, um… Shall we put it on there? But then we take in equal 
(inaudible) spaces. It will be easiest to see where (inaudible). Then we 
sort of take 10, 20, 30.

33 	 S2: 	 Yes, yes, yes!
34 	 S3: 	 Mhm. Then we get one that is… (pointing at a graph).
35 	 S1: 	 But then, uh, you have to bring, yes, you have to have exponential, yes.
36 	 S3: 	 Or if we are going to somehow take 10, 100, 1000.
37 	 S1: 	 Yes. But, not really, you know either, because that’s not true. And then 

we are going to make a line, or make a linear function then. […]
38 	 S1: 	 What else are we going to play around with now then?
39 	 S3: 	 The change in… (inaudible).
40	 S1: 	 A constant… So, there must be something… logarithm case is here.
41 	 S3: 	 Or exponential…

S3 plotted the graphs while discussing exponential (turn 35) and loga-
rithmic functions (turns 36, 40) with S1, before realising that a biomass 
increment should be plotted (turn 39). Students referred to changes in 
population size over time, drawing on their experience of plotting expo-
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nential growth and using logarithmic scales in biology classes (Campbell 
& Reece, 2005; Campbell et al., 2021; Miller & Harley, 2001). They did not 
use linear regression to find the proportionality coefficient, although 
S1 mentioned using a linear function (turn 37) and a constant (turn 40).

Episode 5 (Group 2: plotting the logistic curve)
42 	 S3: 	 Oh, we are going to analyse the graph. It grows quite nicely, even when 

it is soon exponential, no, not like that, what is it called?
43 	 S1: 	 When it stops growing?
44 	 S3: 	 Yes, please. Yes. You can see it flattening out.
45 	 S2: 	 Yes, it is very (inaudible), and then it flattens out.

Students discussed the sigmoid (logistic) curve (turns 42–44), paying 
attention to the characteristic flattening of the graph (turns 44, 45).

Episode 6 (Group 2: making sense of bacterial growth and carrying capacity)
46 	 S3: 	 He wants us to find the carrying capacity, sort of. I do not think it will 

crash, because you often have population crashes, but does it happen 
in yeast? Maybe it does?

47 	 S2: 	 Yes, it does.
48 	 S3: 	 I guess that is it.
49 	 S2: 	 But I do not understand that; the yeast will flatten out, but the food 

will run out some time. Do they eat each other then? Are they can-
nibals somehow?

50 	 S3: 	 It is a population crash then, but we don’t have that here.
51 	 S3: 	 They don’t want to grow, but they can stay constant somehow. It 

would not grow because there is no more room for it. But they can 
stay constant.

52 	 S2: 	 Mhm, so, say, you have ten people in a room then. If you feed them 
every day, they still will be living.

53 	 S3: 	 We need to sterilise them all, so there are no more people added, 
because there is no room for that.

Students discussed restricted population growth (turns 51, 53), limited 
food availability (turns 49, 52), the stationary phase (turn 51), and pos-
sibilities for population crash (turns 46, 50), cf. the phases in the yeast 
growth model in figure 1. Carrying capacity was not mentioned explic-
itly, even though all but the first fast phase of bacterial growth in figure 
1 were touched upon in the discussion.
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Discussion and conclusions
In this paper, we explored the impact of semantic differences between 
biology and mathematics on students’ reasoning in mathematical mod-
elling tasks. We analysed how two important interrelated concepts  
– carrying capacity and population density – are perceived by the biology 
and mathematics communities. The key distinctions that may influence 
students’ thinking can be summarised as follows.

For mathematicians, population density in simple cases implicitly 
assumes homogeneous mixing and is calculated by straightforward divi-
sion of the total population by the area it inhabits. If a radial density is 
known, the total population in two- and three-dimensional cases can be 
computed by integration. These views do not match the perspective of 
biologists, who often use population density as a proxy for population size 
or environmental fitness. The mathematical assumption of homogeneity 
corresponds to uniform dispersion, which is not feasible for most popula-
tions. Since biologists pay attention to dispersion and density-dependent 
(and density-independent) population properties, they prefer sampling 
techniques to integration.

Mathematicians usually introduce carrying capacity with reference to 
the logistic differential equation (4), whose right-hand side satisfies the 
conditions of the Existence and Uniqueness Theorem (Boyce & DiPrima, 
2013, p. 82). This is why the consideration by biologists of solutions that 
oscillate around carrying capacity before approaching it at infinity (Miller 
& Harley, 2001, p. 78) contradicts the uniqueness of solutions and makes 
little sense to mathematicians. The death phase of bacterial growth (see 
figure 1), supported by numerous laboratory experiments, does not agree 
with the logistic model (4). Finally, the multiple interpretations of car-
rying capacity in contemporary ecology (Hixon, 2008, p. 528) require 
particular attention from both communities.

Our analysis of students’ reasoning confirms its strong connection 
with professional training (Chiel et al., 2010). Working on Problem A, 
designed by an ecology professor (Harte, 1998), students struggled with 
mathematisation, but their reasoning resembled some of his arguments. 
Students also experienced difficulties with Problem B, based on real data 
from a biological experiment (Pearl, 1927). Although linear regression is 
studied in Norwegian high schools, students did not recognise its rel-
evance for finding proportionality constants and were confused by the 
request to plot biomass increment versus biomass. Previous experience 
with plotting functions against time negatively influenced their percep-
tion of Problem B and hindered progress.

The teaching experiment provides empirical evidence supporting the 
claim that, in teaching mathematics to biology undergraduates, science 
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should come first (Karsai & Kampis, 2010). The prevalence of biologi-
cally motivated interpretations of concepts emphasised in the biology 
curriculum can overshadow students’ understanding of mathematics 
and its potential applications in biology. For instance, the process of 
binary fission in bacteria is well understood by biology undergraduates. 
Although they encountered the exponential function in high school, 
biological ideas of cell fission and exponential growth may dominate 
their views on the dynamics of more complex biological populations. Stu-
dents’ interpretations of carrying capacity and population density reflect 
semantic differences between the two disciplines, and their approach to 
solutions often relies more on biological arguments than on mathemati-
cal reasoning. Such trends can affect students’ ability to effectively use 
mathematical modelling to address biological problems. To support stu-
dents’ learning, “teachers must have at least the same mathematical and 
extra-mathematical knowledge needed to manage these tasks as expected 
from the students” (Niss & Blum, 2020, p. 94). Teachers should carefully 
select applied tasks, paying attention to the correct interpretation and 
use of multivalent terms across the two disciplines.
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