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This study explores the social affordances that emerge from group interactions when 
students use digital tools in mathematical modelling activities. Drawing on video 
recordings and screen-capture data, we analyzed the collaborative work of four 
groups of 14-17-year-old students as they engaged with two mathematical model-
ling tasks. Using Gibson’s Affordance Theory as an analytical lens, we identified three 
key social affordances of digital tools: common focus, observing and improving strat-
egies, and authority of the digital tool. These social affordances shaped collabora-
tion, though some were not completely actualized due to constraints that hindered 
the students’ working process. The findings demonstrate how digital tools mediate 
social interaction in mathematical modelling, highlighting the interplay between 
affordances, constraints and the learning context. 

Several studies have investigated the role of digital tools in mathemati-
cal modelling (Greefrath & Siller, 2017; Greefrath et al., 2018), a process 
that maps real-world situations in mathematical terms with the goal of 
finding a real-world solution (Niss & Blum, 2020). However, most research 
in this area has been conducted from a cognitive perspective, focusing 
on heuristics and the modelling process, often schematized in a cyclic 
diagram (Cevikbas et al., 2022). As Vos and Frejd (2022) note, an exclu-
sive emphasis on cognitive aspects risks overlooking other important 
dimensions, such as metacognitive strategies, digital tools used, and social 
norms that play a role in mathematical modelling. 

To address part of this research gap, the present study investigates 
two aspects that have not been addressed sufficiently: digital tools used 
and social interactions in mathematical modelling activities (English 
et al., 2016; Greefrath et al., 2018). While some studies have explored 
how digital tools shape the social dimensions of group work in math-
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ematical modelling (Afram, 2023, 2024; Geiger et al., 2010), this line of 
research remains limited. Previous studies have tended to investigate 
these aspects separately and have rarely examined them in combination. 
This study brings these strands together by analyzing how digital tools 
mediate students’ group interactions during mathematical modelling. 
By focusing on interactional processes rather than solely on cognitive 
outcomes, it moves beyond a purely cognitive perspective to incorporate 
the social dimensions of students’ engagement. In doing so, it highlights 
how social aspects in a digital environment are essential to understand-
ing the broader classroom context of modelling, offering an integrated 
social and technological perspective on how digital tools can facilitate or 
constrain group interactions. 

We subscribe to the views of Greefrath et al. (2018) and refer to digital 
tools as digital technologies, such as computers, tablets, or hand-held 
devices that can be used to support the learning and teaching of math-
ematics in some specific way. Furthermore, we do not limit the concept 
of digital tools to specific devices but also encompass how they are used 
or mediate the activities of individuals. 

The structure of this paper is as follows: first, we review the literature 
on mathematical modelling with digital tools, and outline the theoreti-
cal framework used to analyze social affordances; next, we present the 
methodology for identifying and analyzing these affordances; finally, we 
discuss the findings and conclude with key insights and implications.

Literature Review and Theoretical Framework
This study examines the social affordances of digital tools in students’ 
group interactions during mathematical modelling. To situate this focus, 
we first review research on digital tools in mathematical modelling and 
their potential to influence social interactions. We then outline an Affor-
dance Theory perspective that underpins our analysis, clarifying how it 
guides the identification and interpretation of social affordances in this 
context. 

Digital tools in mathematical modelling
Research on mathematical modelling outlines different perspectives and 
approaches (Blum, 2015; Kaiser & Sriraman, 2006; Stillman, 2019), with 
the modelling cycle being the most frequently used theoretical approach 
(Geiger & Frejd, 2015). Figure 1 shows a commonly cited version from 
Blum and Leiß (2007). Variations exist in the number of phases and ter-
minology compared to the phases shown in figure 1 (Perrenet & Zwan-
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eveld, 2012). Niss and Blum (2020) emphasize that it cannot be over-
stated that the depiction of the cognitive processes (phases 1-7 in figure 
1) involved in performing modelling is an analytic reconstruction of what 
must happen in principle. 

Digital tools can be used in all the phases outlined in figure 1 (Greefrath 
et al., 2018) and can influence group interactions throughout the process 
(Afram, 2024). For example, in group work, digital tools may shape the 
approach students take while working mathematically (phase 4 in figure 
1) or affect how solutions are validated (phase 6). Research shows that 
such tools not only impact students’ modelling processes (Molina-Toro 
et al., 2019) but are also shaped by the social dynamic of group work. 
For instance, GeoGebra and other Dynamic Geometry Software can 
support sense-making and negotiation in group interactions as students 
solve mathematical tasks (Granberg & Olsson, 2015; Zengin, 2021). These 
interactions, however, depend on factors beyond the tools themselves, 
including the nature of the mathematical task (Geiger et al., 2010) and 
group composition, as questioning, challenging ideas (Goos et al., 2002), 
and dominance by high-performing students (Esmonde, 2009) can sig-
nificantly influence outcomes. 

Some studies have examined group interactions in modelling using 
socio-cultural perspectives such as Cultural-Historical Activity Theory 
(CHAT) (Afram, 2023, 2024; Hernandez-Martinez & Harth, 2015), based 
on Engeström’s framework (Engeström, 1987). CHAT provides a lens 
for understanding how socio-cultural factors mediate human activity. 
Hernandez-Martinez and Harth (2015) highlight that ideas in group 
work gain value only when connected to a shared understanding of the 

Figure 1. The modelling cycle by Blum and Leiß (2007).
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problem. Similarly, Afram (2023) notes that one of the key factors influ-
encing modelling outcomes is the way group members engage with and 
build on the outputs, representations, and feedback generated by digital 
tools during collaborative activities. Importantly, the use of digital tools 
is inseparable from both the users and the specific activity in which they 
are embedded (Borba & Villarreal, 2006; Goos et al., 2003; Jacinto & Car-
reira, 2017). 

Although there is a small but growing body of research examining 
how digital tools influence the social dimensions of group work in mod-
elling, this area remains underexplored—particularly when approached 
from an Affordance Theory perspective. Wertsch (1998) argues that the 
impact of mediational means (such as digital tools) can be understood in 
terms of actions they enable, aligning with Gibson’s (2014) conceptual-
ization of affordances. Yet, existing studies that reference ”affordance” 
in the context of digital tools in mathematical modelling (English et al., 
2016; Siller et al., 2023) rarely engage directly with Affordance Theory as a 
framework. Among those that do, the emphasis has often been on the role 
of digital tools in validating results (phase 6 in figure 1) (Hankeln, 2020), 
which leaves opportunities to explore their broader influence across dif-
ferent phases of the modelling process and on the social dimensions of 
group work. 

To address this gap, the present study analyzes video and screen-cap-
ture data to identify the social affordances that influence students’ group 
interactions during mathematical modelling activities. Specifically, it 
addresses the research question: What social affordances of digital tools 
impact students’ group interactions in mathematical modelling activities? 

Social affordances of digital tools: An Affordance Theory perspective 
Gibson (1977) introduced the term affordance to describe the relation-
ship between organisms—in this case, humans—and their environment. 
By challenging the traditional dichotomy between subjective and objec-
tive aspects that separated organisms from their environment, Gibson 
contributed to ecological psychology, which emerged as an alternative 
to the dominant behaviorist paradigm (Bærentsen and Trettvik, 2002). 
According to Gibson, affordances exist independently of the observer, 
but must be explicitly, directly and consciously perceived—without nec-
essarily requiring conscious reflection—to be acted upon (Gibson, 1979, 
2014). Here, perception refers to being attuned to relevant possibilities for 
action, and not necessarily conscious reflection. Affordances describe the 
action possibilities an object offers, given the capabilities of the observer. 
For example, a knee-height horizontal surface (e.g., a low bench) can 
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function as a seat for a human but not for most animals, which lack the 
ability to sit in a similar manner. Thus, an affordance is not an inherent 
property of an object but emerges from the relation between the user 
and the object. Importantly, affordances are always coupled with con-
straints, which are complementary rather than opposite to them (Had-
jerrouit, 2017, 2020).

Some studies have emphasized that affordances are perceived before 
being actualized (Anderson & Robey, 2017; Bernhard et al., 2013), in line 
with Gibson’s original theory. In contrast, other studies—using per-
ceived in a narrower, more explicit sense—have shown that affordances 
can sometimes be actualized without explicit and direct perception, for 
example, through imitation, routine, trial-and-error, or habit (Strong et 
al., 2014; Volkoff & Strong, 2013; Wang et al., 2018). Markus and Silver 
(2008) argue that affordances should be perceived by the individual(s) 
before they can be acted on or actualized. For instance, the affordances 
that emerge in students’ mathematical modelling with digital tools (e.g., 
GeoGebra) can be categorized into two aspects: the students being aware 
of the existence of the action potential of GeoGebra (perceived affor-
dances) and when the students turn the potential of GeoGebra into 
action (actualized affordances). In this study, we adopt this distinction—
perceived affordances as explicit and direct perception in Gibson’s sense, 
and actualized affordances as the resulting action—while acknowledging 
that the former often precedes the latter but is not strictly necessary. 

Gibson’s original formulation focused mainly on functional or opera-
tional aspects of the environment, without explicitly addressing the influ-
ence of the socio-cultural context. In response, a more recent approach 
has sought to integrate Gibson’s Affordance Theory with Cultural-His-
torical Activity Theory. This perspective, as explored by Pedersen and 
Bang (2016) and Bærentsen and Trettvik (2002), considers affordances 
through the lens of Leontev’s Activity Theory, which presents a three-
tiered hierarchical model comprising operations, actions, and activity. 
Moreover, there exist a number of research studies that explore socio-
cultural affordances of digital tools (Afram, 2024; Bærentsen & Trettvik, 
2002; Chiappini, 2013; Hadjerrouit, 2017; Kirschner et al., 2004; Turner 
& Turner, 2002).

Chiappini (2013) explores the socio-cultural dimensions of affor-
dances, introducing ”cultural affordances” to describe the cultural objec-
tives embedded in digital learning tools—for example, how a tool’s design 
can reflect the mathematical practices and values of a specific educa-
tional context, such as for teaching algebra. Turner and Turner (2002), 
in their work on collaborative virtual environments, also define cultural 
affordances as features within an artefact that, through its creation or 
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use, are imbued with cultural values. They note that such affordances 
are often recognizable only to members of the originating culture; for 
instance, many people today would not recognize the affordances of a 
slide rule for performing logarithmic calculations. While these concepts 
highlight the broader socio-cultural context in which tools are used, our 
focus narrows to affordances that directly shape student collaboration 
in mathematical modelling. 

Kirschner et al. (2004) identify three relevant categories: technologi-
cal affordances (usability and functional features that encourage specific 
learning behaviors), educational affordances (features that support spe-
cific learning activities, such as collaborative learning), and social affor-
dances (possibilities for interaction and peer engagement facilitated by 
the tool). The prominence of each depends on factors like user expec-
tations, prior experience, and the learning context. This categorization 
is closely aligned with that of Hadjerrouit (2019), developed specifically 
in the context of mathematics education. Hadjerrouit distinguishes 
between technological affordances (e.g., to draw graphs and functions), 
pedagogical affordances (particularly mathematical—e.g., linking repre-
sentations between geometric, numeric, and graphical forms) (Pierce & 
Stacey, 2010), and socio-cultural affordances—the last of which aligns 
with Kirschner et al.’s social affordances and is central to our analysis. 

This study focuses on social affordances as they pertain to students’ 
mathematical activities during their interactions with peers (student-
student) and digital tools (e.g., student-GeoGebra). In this view, digital 
tools act as socio-contextual mediators relevant to the student’s social 
interactions (Kirschner et al., 2004). For example, when a group member 
steps onto the social stage and solves a task with a unique strategy, the 
digital tool acting as a socio-contextual mediator may invite, allow, 
encourage, or even guide another member to initiate or suggest another 
strategy—either to repair divergences or to improve the previous one—
within the ongoing interaction. While shared artefacts such as paper-
and-pencil can also foster collaboration, our focus is on how digital tools 
uniquely do so by enabling simultaneous access to shared representa-
tions, rapid testing of ideas, and structuring group engagement in ways 
less feasible with paper-and-pencil methods. We also acknowledge that 
the affordances and constraints that emerge may depend on the student’s 
characteristics, the type of tasks, the classroom setting, fellow students, 
and other factors.

Building on this, the present study was conducted in a setting where 
students worked collaboratively on a single computer. This arrangement 
meant that certain affordances of the digital tool were simultaneously 
accessible to all group members. We refer to these as shared affordances—
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affordances perceived and actualized collectively by several participants 
in similar ways (Leonardi, 2013; Volkoff & Strong, 2017)—which enable 
students to coordinate their actions and pursue a common modelling 
goal. 

Given this collaborative setup, several types of social affordances can 
emerge in mathematical modelling, depending on the specific socio-cul-
tural context. In this study, we focus on three that have been described 
in prior research: common focus (shared knowledge and creating a shared 
goal); observing and repairing divergencies (Granberg & Olsson, 2015; 
Roschelle & Teasley, 1995); and authority of the digital tool (leading to 
personalizing problem-solving in group situations) (Lowrie, 2011). While 
these categories are not explicitly labelled as ”social affordances” in the 
literature, they align with our definition and are applied as such in this 
study. 

To create a shared goal (common focus), the students have the facility 
(provided by the digital tool) to look at the same thing as they negotiate 
and agree on the appearance of the mathematical representation gener-
ated by the digital tool. Granberg and Olsson (2015) argue that students 
might use digital tools as reference tools to visually demonstrate their 
ideas to one another in group interaction. For instance, a student might 
suggest a function to their peers and use GeoGebra to represent this 
function graphically.

To observe and repair divergences—in the group’s solution strategy or 
process—digital tools can help maintain shared knowledge and ideas in 
group interactions. In some instances, students might find themselves in 
a situation marked by uncertainty and divergences (among others), which 
might cause their solution process to cease. However, digital tools could 
be used to verify ideas or settle disagreements by performing tests and 
referencing, among others (Granberg & Olsson, 2015). 

The authority of digital tools describes situations where students only 
accept an answer from the digital tool as correct. Personalizing problem-
solving (Lowrie, 2011) might be another way of addressing the authority 
of the digital tool. Personalizing problem-solving is based on an individu-
al’s interest, such as the adopted problem-solving strategies (Yerushalmy, 
2000) or the choice of mathematical representation and representational 
types offered by digital tools. There are also situations where students 
uphold their strategy or results from digital tools and do not accept other 
strategies when they think they are close to finding an answer (Afram, 
2024).
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Methodology 

Context of the study
This paper results from a PhD study on secondary school students’ math-
ematical modelling with the aid of digital tools, comprising four second-
ary schools in southern Norway (Afram, 2024). Mathematical model-
ling has been a component of the Norwegian curriculum for decades. 
However, it has been regarded as a compulsory component in the core 
elements of the mathematics subject at all levels, implemented in autumn 
2020 (Berget, 2022). Following the current curriculum (particularly on 
mathematical modelling), students are expected to have insight into how 
models are used to describe everyday life and to undertake mathematical 
modelling themselves in creating such models. This study investigates 
four groups of secondary school students tackling mathematical model-
ling tasks using digital tools. 

Research design 
This study adopts a qualitative case study approach, focusing on four 
groups (Groups A, B, C and D) of students aged 14—17 from four different 
schools. All names used are pseudonyms. Groups A (Thea, Rolf and Kåre), 
B (Emil, Thor, Ella and Tore) and C (Nils, Anna and Jørn) attended upper 
secondary school (12th, 11th and 11th grade, respectively), while Group D 
(Olga, Hege and Lena) attended lower secondary school (9th grade). The 
11th and 12th graders were under the program for general studies, taking 1T 
(theoretical mathematics) and R1 (mathematics for science), respectively. 
Groups A, B and D were mixed-achievement groups, whereas Group C 
was a same-achievement group (but also a group of high-performing stu-
dents). Achievement levels were based on teacher-assigned grades using 
the Norwegian grading scale (1—6), where 5—6 indicate high perfor-
mance, 3—4 indicate average performance, and 1—2 indicate low perfor-
mance. This grading scale served as the basis for classifying students into 
mixed- and same-achievement groups.

The students were selected based on geographical accessibility, prior 
experience with digital tools, and a mathematics curriculum that sup-
ports mathematical modelling. The students in each group were ran-
domly selected (forming the focus group) from among the students who 
volunteered. The study took place during regular lesson hours. Before 
the students solved Tasks 1 and 2 without any help (main activity), they 
solved similar tasks with the help of the teacher and the first author 
(introductory activity). In both activities, each student group shared a 
single computer. During the introductory activity, GeoGebra was the 
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primary tool, though other digital tools were occasionally used. The unit 
of analysis in this study is ”social affordances in a group of students’ 
interactions with digital tools during a mathematical modelling activity”. 

The tasks
The tasks used in the students’ activities were purposely chosen as they 
highlight all the aspects of the modelling process (Berget, 2022). These 
tasks have been used elsewhere for different purposes (Mousoulides, 
2011). The tasks involve the entire modelling cycle in one way or another, 
even though different phases (in the cycle) manifest themselves with 
varying weights across the set of tasks. For instance, Task 1 below involves 
equations and mathematical methods, whereas Task 2 emphasized logical 
reasoning, analysis, and the application of real-life experiences. No sup-
porting materials, such as maps or links, were provided for Task 2; it was 
designed as an open task in which students selected and used their own 
resources, including any digital tools they deemed useful. This meant 
that while no restriction was placed on tool use, students’ choices could be 
informed by the similar tools used in the introductory activity. The tasks 
were administered by the teacher in whole-class settings during regular 
lesson hours, with a 20-minute time allocation per task. Students were 
not stopped/interrupted if they exceeded this time, though such limits 
can still impose time-related constraints (Caviola et al., 2017).

Figure 2. Task 1 and 2 used with the students.
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Data collection method
Data was collected during the main activity, which in total consisted of 
3 hours and 30 minutes of recorded conversations (via video recordings) 
and computer activities (captured using screen-capture-software) from 
all the groups combined. 

The video recordings of the students’ interactions during the activi-
ties revealed their working process and their interactions with each other 
and the digital tools. 

The screen-capture-software complemented the video recordings as it 
provided information about how the students solved the task on the com-
puter. The groups’ approaches to tackling the tasks differed (although 
some groups’ approaches were similar to others). 

This paper does not focus on the students’ results (although it is indeed 
a relevant issue on its own) or other topics concerning the students’ activi-
ties. Instead, our primary focus is investigating the social affordances of 
digital tools that impacted the students’ mathematical modelling activi-
ties. We did not probe into the students’ views (by interviews during the 
activity on why they took a particular action), as that would distort the 
flow of the activity and, perhaps, influence the emergence of social affor-
dances to some extent.

Dialogue between the students was transcribed verbatim, and inter-
actions with GeoGebra, Excel/spreadsheet, calculator, Google Maps, 
Google Search, and gestures (such as pointing to the screen) are described 
below using square brackets (e.g., [Hege plots a point ’A = (100, 5000)’ in 
GeoGebra]).

Data analysis and interpretation
This study uses thematic analysis, as outlined by Braun and Clarke (2006), 
based on the combination of inductive and deductive approach to coding. 
Specifically, the process involves generating codes directly from the data, 
identifying, defining and naming the themes, drafting a report, and cat-
egorizing the themes within predefined categories. In essence, thematic 
analysis serves as a method for identifying, analyzing, and reporting pat-
terns (themes) within the data. The coding process is based on interpre-
tations of the data. However, because of the theory-driven (deductive) 
approach, the interpretations are influenced by predefined categories 
within the theoretical framework. The process of searching for, defin-
ing, and naming themes emerge both from the empirical data (and the 
codes derived from it) and from the predefined categories. Thus, thematic 
analysis involves an iterative process between the codes and the empirical 
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data, allowing new patterns (themes) to emerge and generating additional 
codes as the process evolves.

The data was organized based on the phases of the modelling process 
(see figure 1). Each phase was then analyzed according to the social affor-
dance categories. In this study, the predefined categories are the social 
affordances: common focus (CF), observing and repairing divergencies 
(ORD), and the authority of digital tools (ADT) (defined and explained in 
the theoretical background section). In the analysis process, ORD could 
not explain a section of the data; hence, a new category, observing and 
improving strategies (OIS), was introduced. We define the social affor-
dance OIS as the process where the digital tool allows students to view 
or follow the solution process and improve the strategy adopted due to 
the affordances of the digital tool perceived by the students. For instance, 
one student might input numbers into a function/equation to examine 
changes, while another student might suggest using a slider as a more 
efficient way to track those changes based on what he/she perceived of 
the tool. 

This new category, OIS, resulted from allowing the categories to emerge 
from the data, although we started with theory-informed categories. We 
also invited another researcher to code a section of the data, and we com-
pared, discussed and modified our codes/categories (intercoder reliabil-
ity). The codes for the social affordances were analyzed along with other 
codes, resulting in an overall intercoder reliability of 98.44 % (Afram, 
2024). The analysis focused on students’ language (suggestions, questions, 
answers, arguments, and others) and actions (gestures and interaction 
with digital tools). The analysis followed an interpretative perspective, 
considering that providing a detailed and in-depth description of the stu-
dents’ activities would encompass a conjunction of the students’ percep-
tion of their activity through their actions (data from video recordings), 
the analysis of their solution (data from screen capture) and our perspec-
tive informed by the theoretical background of this study. 

Results
Table 1 summarizes the actualized social affordances identified in the 
activities of Groups A—D for Tasks 1 and 2, while table 2 (non-group-
specific) shows how these affordances appeared across the phases of the 
mathematical modelling process (see figure 1). In both tables, an ”X” indi-
cates that the affordance was identified, while an empty space means it 
was not. These identifications are based on our categorization of social 
affordances actualized through students’ interactions with peers and 
digital tools. 
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As shown in table 1, the recorded social affordances were CF, OIS 
and ADT; no instances of ORD were identified. CF was the most preva-
lent, emerging in all groups and both tasks. Table 2 shows that CF was 
also the only affordance that emerged in every phase of the modelling 
process. OIS emerged exclusively in phase 4 (working mathematically), 
while ADT emerged in phases 4 and 6 (validating). Phase 4 was also the 
phase in which the greatest variety of social affordances emerged, fol-
lowed by phase 6. 

Together, the tables provide complementary perspective: table 1 links 
social affordances to specific groups and tasks, whereas table 2 situates 
them within the broader modelling process. The following subsections 
illustrate these patterns with excerpts from video transcripts and screen 
recordings as evidence, focusing on qualitative insights into how each 
social affordance manifested rather than on statistical analysis. 

Social Affordances Task

Groups

A B C D

Common focus  
(CF)

1 X X X X

2 X X X X

Observing and repairing divergencies  
(ORD)

1

2

Observing and improving strategies 
(OIS)

1 X

2

Authority of digital tools  
(ADT)

1 X X

2 X

Table 1. The social affordances identified in the students’ activities.

Social  
affordances 

Phases of the modelling process (see figure 1)

CF X X X X X X X
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ADT X X
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Table 2. The social affordances identified in the phases of the mathematical  
modelling process.
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The solution strategies employed by the groups shared both similarities 
and differences. Consequently, the actualized social affordances were 
alike but manifested in different ways. To illustrate this, we present an 
example of the actualized social affordances for each task. 

Common focus (CF) 
From table 1, the social affordance CF was identified in Groups A, B, C 
and D’s activities as they worked on Tasks 1 and 2. The students had the 
facility to look at the same thing as they agreed on a shared goal through 
a flow of turn-taking, dialogue and action. However, CF was not iden-
tified individually when the students only had the device (digital tool) 
to themselves (for example, hand-held calculators and mobile phones). 
Below, we will present an example of CF regarding Group A’s activities 
in Task 1. Group A’s solving activity started outside the computer. Thus, 
the students recognized and classified the variables in the problem (the 
people and the car price) and the things they needed to do. Group A 
used the trial-and-error method by analyzing patterns of numbers after 
searching for a function that represents the number of people buying 
the car and the price at which they buy it. Below is part of the transcrip-
tion of Group A’s activity regarding Task 1, illustrating the CF category:
 
Kåre:	 Like this [Points to the x and y axis in GeoGebra, draws a graph with 

paper-and-pencil and writes f(x) = 100x representing the graph].
Thea:	 Erm no, then you say that erm… its going down with a 1000… If you 

understand.
Kåre:	 So, it will be naturally in there, right? ’Konstantledd’ [constant term] 

or something? 
[…]
Thea:	 Yeah, it’s going to be on the x-axis, it’s not a constant. Do you have any 

ideas? [Thea asks Rolf if he has any idea] … If we try… I just try some-
thing [Draw the graph of the function f(x) = -x + 100 in GeoGebra, 
see figure 3]. Erm, it goes down by one person, if we just try, I don’t 
think this is the right... 

Rolf:	 It could be true.
Thea:	 Yeah, if we think that 5000 is zero then when [writes x = 1 on the 

graph, see figure 3]
Rolf:	 Should be 99 or something.
Kåre:	 So, what you are showing here is erm… you lose one person per 100.
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From the dialogue above, the students negotiated and agreed on the func-
tion representing the number of people who bought the car. They made 
a linear graph with the number of people on the y-axis and the price of 
the car on the x-axis (see figure 3). From figure 3, if y = 99 (people), it 
intersects the function f at x = 1, meaning 99 people will buy the car at 
5100 euros (since the x-axis starts from 5000 and every one point rep-
resents 100). The students then used a hand-held calculator to find the 
total revenue by multiplying the number of people by the corresponding 
car price (they repeated this procedure until they arrived at an answer). 
GeoGebra was used as a reference tool to visualize one’s reasoning during 
the mathematical discourse. For Kåre to visually demonstrate his rea-
soning to his peers, he used GeoGebra as a reference tool by pointing to 
the coordinate axis and sketching with paper-and-pencil (f(x) = 100x) 
in relation to the coordinate axis. Thea, responding to Kåre’s proposed 
function, used GeoGebra to visually demonstrate her suggested func-
tion f(x) = -x + 100.

Figure 3. Illustration of Group A’s initial function regarding Task 1.

Below, we present another example of CF from Group A’s engagement 
with Task 2. After reading the task, the students suggested the optimal 
location and located the three cities on Google Maps, and the following 
dialogue occurred:
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Kåre:	 Yeah, so it should be like above Vennesla somewhere. Can you show 
me where Lillesand is on the map?

Thea:	 Yes, a moment. Should we find the map, do you agree?
Rolf:	 Yes.
Thea:	 [Opens Google Maps, and searches for Lillesand, see figure 4]. 

Lillesand, my cousin has a cabin there.
Kåre:	 So, this is Kristiansand and there is Vennesla [Pointing to the map].
Thea:	 We save it [Saves Lillesand and the other cities on Google Maps].
Rolf:	 It’s like a triangle then [Joins the three points on the map by hand].

In this dialogue, Rolf visualizes his reasoning by joining the points of 
the cities by hand and concluding that it will form a triangle. This helps 
with the interaction between the students as they have the tools to look 
at and follow the same things in their interactions. 

The activities of Group A illustrated above (regarding both tasks) 
occurred in the first three phases of the modelling process (see figure 
1). Thus, the students recognized and classified their initial variables, 
searched for the position of the three cities on the map, drew an initial 
function with paper-and-pencil, and created a model in GeoGebra, 
among others. This does not mean CF only emerged in the first three 
phases of the modelling process. It emerged in the other phases of the 
modelling process (see table 2), but we only reported two instances due 
to the scope and focus of the study.

Figure 4. Illustration of Group A’s search of the three cities on Google Maps.
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As shown in table 1, the social affordance ORD was not identified in the 
students’ activities for either task. Therefore, we will proceed to report 
on the next category, OIS. 

Observing and improving strategies (OIS)
As shown in table 1, the social affordance OIS was only identified in 
the activities of Group A as they worked on Task 1. We will report two 
instances of this category as they occurred in Group A’s activities. While 
Group A repeated the procedure highlighted under CF, the students 
found themselves in a situation where they wanted an efficient way to 
find the company’s maximum revenue. The excerpt below describes 
Group A’s interaction:

Rolf:	 But isn’t it like a faster way to find that out. I feel like there is, but I 
don’t have any idea how to do it. 

Thea:	 We can make sliders, I think… We can try.
Kåre:	 I don’t know.
Thea:	 Erm [Makes a slider a = 100, but the slider has no effect on the graph, 

see figure 5] … We just try something else [writes y = 60 on the graph 
and found the point of intersection with the line f(x) = - x + 100, see 
figure 6]. Here 40 multiplied with 100, 4000 so it’s not more. So, I think 
we should try ... 

Rolf:	 Try 100.

GeoGebra could be used to maintain and improve shared ideas in group 
interactions. In the dialogue above, Rolf reviewed the solution strategy 
and felt there was a faster way to find the maximum revenue, but he 
could not visually demonstrate his ideas. This could be that Rolf was 
not confident enough to put forward his thoughts, or did not know how 
to actualize what he perceived GeoGebra could afford them. However, 
this triggers Thea to come up with the idea of making sliders (see figure 
5). Thea made a slider (a = 100), but it did not affect the graph as it has 
no link with the function (f(x) = -x + 100). The tool has a constraint that 
the slider must be well-defined to have any effect on the function. When 
unsuccessful with the sliders, the students reverted to their initial strat-
egy. Considering the students’ activities, there was no divergence in the 
initial strategy, as the strategy adopted only needed improvement to be 
more efficient. However, their interactions and solution process might 
have changed if they had successfully created the slider. In this case, 
GeoGebra might have afforded the possibility of ”observing and improv-
ing” solution strategies in group interactions if the function and slider 
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under construction were mathematically linked. Thus, if the students 
inserted the function f(x) = -x + 100 in the algebra view in GeoGebra with 
x = a (forming a slide a = 1 and an equation eq1: x = 1). Then, intersecting f 
and eq1 with the intersection point A (i.e., A = Intersect (f, eq1,1)) might 
help to regulate the number of people buying the car and the price at 
which they buy the car (using the slider).

In another instance, the category OIS was identified in Group A’s activi-
ties as they shifted to a different strategy for efficiency. In this case, a 
group member reviewed their strategy and came up with the idea of 
introducing another function. The excerpt below describes this situa-
tion: 

Rolf:	 [Writes the function y = 100x + 5000 in the algebra section and 
reduces the size of the graph, see figure 6].

Thea:	 So, we should go over 50 and… or between 100 people and 50 people 
apply …What have you done?

Rolf:	 I just wanted to draw a new graph so that we can maybe take erm… 
I don’t think it’s right, cos… it can be over the border, I mean go over 
100. There might be more money… I just forgot it actually.

Thea:	 I don’t understand the graph. 

Group A attempted to manipulate their function with the fun-
ction a(x,y) = xy (see figure 6), but they were unsuccessful. Hence, they 
tried another method. In the dialogue above, Rolf made a new equation 

Figure 5. Illustration of Group A’s attempt to make a slider to regulate their function.
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y = 100x + 5000 (see figure 6), representing the price of the car (while 
the initial function f(x) represented the number of people buying the 
car). Rolf seemed confident enough to demonstrate his ideas compared 
to the previous attempt. However, the group did not attain the desired 
results as no function was defined to combine the two functions (e.g., 
g(x) = f(x) . h(x), where h(x) = y). Again, Group A reverted to their initial 
strategy when unsuccessful. 

The activities of Group A, as illustrated above (regarding Task 1), emerged 
in phase 4, ”working mathematically” (see figure 1), of the modelling 
process (see table 2). Based on the analysis, their activities in phase 4 
might have changed if they had actualized what they perceived of the 
digital tool. In this case, their new strategy might have improved their 
initial strategy. In summary, GeoGebra affords OIS in group interac-
tions; however, there are constraints of the tool that hinder this process.

Authority of digital tools (ADT)
From table 1, the social affordance ADT was identified in Groups A, B 
(regarding Task 1) and D (regarding Task 2) activities. We will provide 
an example of this category as it occurred in Group A’s activities related 
to Task 1 and another from Group D’s activities concerning Task 2. In 

Figure 6. Illustration of Group A’s attempt to draw a new graph.
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the case of Group A, while testing various numbers to determine the 
maximum revenue, a student suggested using spreadsheets to generate 
their data. The excerpt below illustrates this situation:

Rolf:	 Oh! we could have done all of it with the ’regneark’(spreadsheet).
Thea:	 Yeah, that’s right.
Rolf:	 And then just try with the
Thea:	 We didn’t think about it.
Rolf:	 Or we just… I mean we can do it now; it might take a shorter time. 
Thea:	 Do you think?
Rolf:	 I think so.	

Thea:	 But we are already done, though. 

To provide further context for the dialogue above, we will first offer a 
brief background on Group A. This group is a mixed-achievement group, 
and their teacher notes that Thea consistently outperforms her peers. In 
Task 1, Thea often assumed a leading role, dominating the conversation 
and guiding the group’s focus on her input at the computer (Afram, 2024). 
Prior to the dialogue above, Thea started with a problem-solving strategy 
that she was comfortable with, starting with a graphical representation 
and then analyzing patterns of numbers and observing the increment in 
revenue. In the dialogue above, Rolf proposed an efficient way to generate 
data; however, Thea, having personalized the problem-solving strategy, 
dismissed Rolf’s suggestions and reverted to the existing idea, think-
ing they were already close to finding the answer (which might also be 
influenced by time constraints). Subscribing to Rolf’s suggestions might 
have helped the group generate their data with the spreadsheet and find 
a function representing it. However, the features of GeoGebra afford 
multiple problem-solving strategies, and the approach used by the group 
depends on the representational choice of the students taking the leading 
role, especially when they think they are close to finding the answer. It 
is possible that Thea hesitated to accept the new idea because she might 
have felt it would require restarting the entire solution process. 

 In Task 2, we identified an example of the category ADT in Group D’s 
activities. The group took a screenshot from Google Maps and inserted it 
in GeoGebra, where they constructed a theoretical middle point (using 
the circumcircle/circumcenter of a triangle approach) without factoring 
in population, roads, or other considerations. One student noted equal 
distances, but another insisted on measuring them in their solution 
process. The excerpt below describes this situation:
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Olga:	 Now you can see it is equally long between all points.
Lena:	 We can measure.
Hege:	 [Searches for the distance between each city and the middle point, 

see figure 7].
Olga:	 Why are you measuring? It is the same length. Aha! It is not as long 

as that, is it? That is the fairest.
Hege:	 Oh, yeah [Finished measuring the lengths, see figure 7].
Lena:	 Yes.
Olga:	 To have it there, are we certain?

Hege:	 Yeah.

From the dialogue above, Olga suggested that the distances from the cities 
to the optimal/middle point are equal since the circle passes through all 
the cities (see figure 7). The other students suggested they still measure 
these distances (see CF, FE and FD in figure 7). Thus, these students would 
rather accept the answer/outcome from the digital tool than their peers 
or measure these distances to ensure their final results.

Figure 7. Illustration of Group D’s measurement between the optimal point and the 
cities.
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 The activities of Group A illustrated above (regarding Task 1) occurred 
in phase 4, ”working mathematically”, while those of Group D occurred 
in phase 6, ”validating”, of the modelling process (see table 2). 

Discussion
The results indicate that the social affordances of digital tools impact 
group interactions in mathematical modelling activities. The analyzed 
social affordance categories are common focus (CF), observing and 
improving strategies (OIS), and authority of digital tools (ADT). These 
social affordances were actualized in the students’ activities. The discus-
sion below follows the order of social affordances listed above. 

Digital tools (not hand-held devices) provide a platform where stu-
dents can create a shared goal by looking at the same element as they 
negotiate and agree on the appearance of mathematical representations 
generated by the tool (Granberg & Olsson, 2015). For example, a student 
used GeoGebra to demonstrate her suggested function graphically while 
responding to the suggestions of another student during the mathemati-
cal modelling activities (see figure 3). Our study reinforces findings made 
by Granberg and Olsson (2015) that students use digital tools as reference 
tools to visualize their reasoning or demonstrate a mathematical repre-
sentation. The interaction example reported in this study occurred in 
the first three phases of the modelling process (see figure 1). However, 
the category CF is not limited to these three phases but might emerge in 
other phases (see table 2). Our main explanation for this might be that 
the students had the facility to look at the same things during their inte-
ractions throughout the modelling process. However, aside from table 2, 
the study does not provide empirical data to support this claim. Instead, 
we can only offer a plausible explanation based on our insights into the 
students’ activities. On that basis, we emphasize that digital tools can 
provide affordances in the different phases of the modelling process 
(Greefrath et al., 2018), and the category CF emerged in these phases as 
the students engaged with the tool. 

The category ”observing and repairing divergencies” (ORD) was not 
identified in the student’s activities (see table 1). Granberg and Olsson 
(2015) describe this category as using digital tools to maintain shared 
knowledge and ideas through verifying ideas or settling disagreements 
by performing tests, among others. On the other hand, a new category 
emerged from the data, ”observing and improving strategies” (OIS). Thus, 
digital tools provide a platform where students can view or follow their 
solution/working process and improve the strategy adopted during group 
interactions. For example, a student felt there was a faster way to find 
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the maximum revenue for the car-selling company but could not visu-
ally demonstrate his ideas. A possible explanation for this issue is that 
the student was not confident enough to express his thoughts. However, 
his suggestion triggered another student to develop the idea of making 
sliders to improve their adopted strategy. Even though the students made 
a slider, it did not affect the graph as it has no link with the function 
(see figure 5). Hence, the group reverted to the initial strategy they had 
begun with. Drawing students’ attention to such constraints might help 
them improve their problem-solving strategies. This finding shows that 
affordances and constraints are complementary (Hadjerrouit, 2020). In 
another example, the students introduced a correct function that might 
help improve their strategy but could not combine their initial and 
current functions (see figure 6). From the above examples, there was 
no divergence in the strategy they began with, as the strategy adopted 
only needed improvement to be more efficient. In this situation, the 
digital tool might allow observing and improving solution strategies in 
mathematical modelling activities if the function and the slider under 
construction are mathematically linked. In this study, the category OIS 
mainly emerged in phase 4, ”working mathematically” (see figure 1), of 
the modelling process (see table 2). ”Working mathematically” is a cogni-
tive barrier in the modelling process that entails manipulating the alge-
braic formulas, calculating, comparing and others (Blum, 2015). However, 
other aspects, besides the cognitive aspects, play a role in the modelling 
process (Vos & Frejd, 2022). For instance, from an Affordance Theory 
perspective, the students’ perception of the digital tool influences how 
they work mathematically (see figures 5 and 6). Again, affordances and 
constraints result from not only what the students perceive of the tool 
but also the educational environment (nature of the task, characteristics 
of the students, and others) in which the students engage with the tool 
(Hadjerrouit, 2020).

The social affordance category authority of digital tools (ADT) 
describes situations where students might only accept an answer from 
the tool as the correct one. For example, a student suggested that the dis-
tances between the middle point and the triangle’s vertices are the same 
since the circle passes through all the vertices. Another student insisted 
they measure these distances with the tool to ensure the answer (see 
figure 7). This happened in phase 6, ”validating” (see figure 1) (Hankeln, 
2020), of the modelling process (see table 2). On the other hand, person-
alizing problem-solving strategies could result from ADT. Thus, person-
alizing problem-solving is based on an individual’s interest, such as the 
adopted problem-solving strategy or choice of mathematical represen-
tation and representational types offered by digital tools. For example, 
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the dominant student (Thea in Group A) had a problem-solving strat-
egy similar to what Yerushalmy (2000) reports as starting with graphi-
cal representation and analyzing patterns of numbers. This student had 
personalized the problem-solving strategy and dismissed the comments 
from another student (returning to the existing idea), thinking they were 
already close to the answer. This happened in phase 4 (see figure 1) of the 
modelling process (see table 2). Subscribing to the new suggestions might 
have changed their solution strategy. This echoes previous research that 
points out that personalizing problems might hinder the potential for 
sophisticated sense-making (in group interactions) that could lead to a 
better outcome (Lowrie, 2011). Lowrie (2011) argues that the more per-
sonalized the students might want the problem to be, the more likely 
these students might complete aspects of the problem individually (and 
not consider the ideas of others). If we draw students’ attention to not 
personalizing the problem-solving strategy but considering input from 
peers, it might benefit their learning and achievement in mathematical 
modelling with digital tools (Afram, 2023). Rejecting new ideas could 
be that the new ideas are not clear enough to connect with the group’s 
current thinking (Hernandez-Martinez & Harth, 2015). Alternatively, 
as reported in this study, a new idea would involve restarting when a 
solution is imminent. Rejecting a new idea could result from time con-
straints, although our study does not provide empirical data to support 
this claim. However, we share Caviola et al.’s (2017, p. 7) views that time 
constraints might ”interfere with decision making by altering strategy 
selection” in problem-solving.

Conclusion
We now revisit the research question of this study, namely: What social 
affordances of digital tools impact students’ group interactions in mathemati-
cal modelling activities? This question is addressed from an Affordance 
Theory perspective. Our study has contributed novel insights for research 
on mathematical modelling with digital tools. Firstly, Affordance Theory 
has been shown to be helpful in investigating the social dimensions and 
impact of digital tools on students’ mathematical modelling activities, 
in contrast to the cognitive approach in the research field. Again, from 
Gibson’s Affordance Theory perspective, affordances are relational and 
emerge from the students’ interactions with the educational environ-
ment of the mathematical modelling activities. Secondly, utilizing the 
categories of common focus (CF), ”observing and improving strategies” 
(OIS), and authority of digital tools (ADT) has further shown to be an 
appropriate methodological approach for exploring social affordances 
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that emerge in school educational settings. It is reported in this study 
that CF mainly emerged in all the phases of the modelling process, OIS 
emerged in phase 4 (working mathematically), while ADT emerged in 
phases 4 and 6 (validating). Thirdly, the approach outlined in this study 
is intended to map other social affordances beyond the ones presented 
in this paper. Moreover, from a practical point of view, affordances and 
constraints of digital tools in mathematical modelling activities need to 
be critically examined. They might be an opportunity for students’ learn-
ing of mathematical modelling by enabling collaborative problem-solv-
ing, fostering communication, enhancing group dynamics, and providing 
diverse perspectives, including those of the teacher, which can enrich 
the collaborative learning process with digital tools. For instance, how 
teachers can help students make sliders to manipulate their function or 
combine two functions while using GeoGebra, among others. Finally, in 
terms of the study’s limitations, the smaller number of participants does 
not warrant a generalization of results. Thus, further research is needed 
to achieve more reliability and validity in broader modelling contexts. 
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