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Rational number knowledge is an important factor in students’ mathematical deve-
lopment. However, many students face difficulties with rational number concepts. 
This study describes a new educational game, NanoRoboMath, which has been 
designed to support students’ rational number knowledge. Our goal is to examine 
the design and the nature of the mathematical practice in the game. Four comprehen-
sive school students aged between 11 and 13 years individually played a prototype 
version of the game. Video recordings and log data of these game sessions revealed 
that the game was able to elicit mathematical activities related to rational numbers. 
This version of the game seemed to enable a variety of strategies matching different 
skill levels and supported arithmetic activities related to different aspects of rational 
number conceptual knowledge. 

Learning to understand rational numbers is a crucial part of mathemati-
cal development (Booth & Newton, 2012). Fraction knowledge has proved 
to be an important predictor of later success with school mathematics 
(Booth et al., 2014; Siegler et al., 2012). However, many students struggle 
with rational number content in the classroom, especially that content 
which is in conflict with features of natural numbers (McMullen et al., 
2015; Ni & Zhou, 2005; Van Hoof et al., 2018). Yet, a small number of 
students are also highly capable of reasoning about rational numbers 
beyond traditional classroom activities, such as having exceptional adap-
tive rational number knowledge (McMullen et al., 2020). Thus, there is 
the potential for interventions to both (a) improve the basic skills of 
students who have the most challenges and simultaneously (b) improve 
more-skilled students’ adaptive expertise with rational numbers (Hatano 
& Inagaki, 1986; Moss & Case, 1999). 
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Previously, game-based learning environments have proven effective 
for supporting students’ mathematical development at a wide range of 
initial skill levels (Brezovszky et al., 2019, 2015). The present study aims 
to examine the design of one such game, NanoRoboMath, and investi-
gate how the game elicits mathematical activities with rational numbers. 

Supporting rational number knowledge
The design of the NanoRoboMath game was guided by two aims in sup-
porting students’ rational number knowledge: (a) supporting the transi-
tion from reasoning about natural numbers to also having a correct con-
ceptual understanding of rational numbers and (b) supporting adaptive 
rational number knowledge. These aims are embedded in practice of 
mental arithmetic with rational numbers.

The transition from reasoning about natural numbers to rational 
numbers is partially influenced by a natural number bias – the tendency 
to inappropriately interpret features of rational numbers using natural 
number reasoning (Ni & Zhou, 2005). It has been extensively described 
in both the mathematics education and educational psychology litera-
ture as a potential cause of some of the difficulties in rational number 
learning (see a recent review by Vamvakoussi et al., 2018). While some 
features of rational number knowledge may be considered a continua-
tion of natural numbers, those features that are inconsistent across the 
two number types may require substantial conceptual change in order 
to be fully understood (McMullen et al., 2018; Stafylidou & Vosnia-
dou, 2004; Vamvakoussi & Vosniadou, 2004; Van Hoof et al., 2018). The 
design of NanoRoboMath aims to take into account the following fea-
tures of rational numbers that have inconsistencies in comparison with 
natural numbers: representations of rational numbers, the magnitude 
of a rational number, the effects of arithmetic operations on rational 
numbers, and the density of the set of rational numbers.

Unlike natural numbers, rational numbers can be represented in mul-
tiple ways. This is true not only within representations (e.g. 1/2 = 2/4; 
.5 = .50), but also across representations (e.g. .5 = 1/2). The magnitude of 
a rational number cannot be interpreted from the symbolic representa-
tion the same way as natural numbers. Longer decimal representations 
or bigger numerators and denominators do not directly imply larger mag-
nitudes. For instance, the magnitude of a fraction must be determined 
based on the relation between its numerator and denominator. With 
natural numbers, multiplication always leads to a greater magnitude in 
the outcome and division leads to a smaller magnitude. With rational 
numbers this is not automatically the case, as numbers less than one 
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lead to the opposite effect on numerical magnitude. The set of natural 
numbers is discrete on the real line, whereas the set of rational numbers 
is dense. The next larger natural number can always be determined and 
there is a finite number of natural numbers between any two natural 
numbers. In contrast, the next larger rational number with respect to 
the natural ordering does not exist and there are infinitely many rational 
numbers between any two rational numbers. 

Explicit reference to the aspects of rational numbers that are incon-
gruent with natural numbers is rare in mathematics instructional mate-
rial (Van Dooren et al., 2019) and teachers themselves can struggle with 
the concepts (Depaepe et al., 2015). Without explicit material to support 
instruction on these topics, they may be lightly covered throughout 
the main period of instruction on rational numbers in primary school. 
Even instructional interventions aimed at eliciting conceptual change 
with density knowledge appear to have limited effects (Vamvakoussi & 
Vosniadou, 2012). One approach that has appeared successful in encou-
raging conceptual change has been to force students to explicitly con-
front their misconceptions (Mikkilä-Erdmann, 2001). Encouragingly, 
some studies indicate that a game-based learning environment may be a 
useful avenue for supporting conceptual change with rational number 
knowledge, though this has mostly been found with concepts of the size 
of rational numbers (Kiili et al., 2017).

The second aim in the design of NanoRoboMath is supporting the 
development of student’s high-level knowledge and skills with rational 
numbers, in particular adaptive rational number knowledge. Adaptive 
number knowledge is defined as having a richly connected understanding 
of numerical characteristics and arithmetic relations (McMullen et al., 
2017) and has been found to be distinct from students’ routine knowledge 
of rational numbers (McMullen et al., 2020). Importantly it distinguished 
those students with an exceptional knowledge of rational numbers, even 
among those students with high levels of routine procedural and con-
ceptual knowledge. Those students with high adaptive rational number 
knowledge appeared to be able to more successfully integrate disparate 
aspects of conceptual knowledge of rational numbers with their pro-
cedural skills in order to solve novel tasks. In particular, they appeared 
able to flexibly switch between fraction and decimal notations in a fluid 
manner to solve the task at hand.

Previous evidence suggests that the same game-based learning envi-
ronment may be able to support advanced knowledge, such as adaptive 
rational number knowledge, while also supporting more basic skills 
among those who need them (Brezovszky et al., 2019). For instance the 
Number navigation game appeared to be able to meet the player at their 



kärki, mcmullen and lehtinen

Nordic Studies in Mathematics Education, 26 (2), 25–46.28

initial level of knowledge and support basic procedural fluency among 
lower prior knowledge students and more advanced knowledge, such as 
adaptive number knowledge, among students with more prior knowledge. 

Design principles of NanoRoboMath
In this section, we describe how the educational content is embedded 
within the core game features of the NanoRoboMath digital game. This 
aspect of integrating the learning content into the design of educational 
digital games instead of just placing it as something extra on top of 
the game has been seen vital for a successful educational game design 
(Brezovszky et al., 2019; Devlin, 2011; Habgood, 2007; Young et al., 2012). 
The player of the NanoRoboMath game acts as a super hero who carries 
out different challenges by navigating a Nanorobot along the number 
line using the four basic arithmetic operations.

In the prototype game version piloted in this study, the challenge of 
the player was to clean polluted water by finding and destroying bacteria. 
The position of the nanorobot and the position of the target (bacterium) 
are shown on the number line. The upper screenshot of figure 1 shows a 
player at the initial position 4.2 and a target at the position 9. In order to 
move the nanorobot, the player may freely choose one of the four arith-
metic operations and enter a rational number as a second operand. The 
current position of the nanorobot acts as the first operand. In the screen-
shot, the player chooses to multiply by 2 in order to get closer to the target. 
By pressing the equals sign, the result of the arithmetic operation is cal-
culated automatically, and the nanorobot moves along the number line to 
this new value. If the new position of the nanorobot equals the position 
of the target, the target is destroyed and the game continues with a new 
target or the level is completed. If there is a difference between the player 
position and the target position, the player chooses new operations until 
the nanorobot reaches the target. As the player moves closer or further 
from the target, the number line rescales (zooming in or out) based on 
the distance between the location of the nanorobot and the target; see 
the lower screenshot of figure 1. 

In order to provide diverse experiences with rational number arith-
metic, there are two playing modes in the game. In the power mode, 
the player should reach the target by minimizing the magnitudes of 
the numbers used in the arithmetic operations. This mode is designed 
to enhance multiplicative reasoning, including the use of multiplica-
tive inverses. For example, moving by addition directly from 4.2 to 9 
would consume 4.8 power points (4.2 + 4.8 = 9). In contrast, moving first 
closer to the target by multiplication (4.2 x 2 = 8.4) and then continuing 
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exactly to the target by addition (8.4 + 0.6 = 9) would need altogether 
only 2 + 0.6 = 2.6 power points. Moreover, multiplication by two could 
be replaced by division by half (4.2 ÷ 0.5 = 8.4), which reduces the power 
consumption to 0.5 + 0.6 = 1.1. Hence, there often exists a multiplica-
tive strategy or a combination of both multiplicative and additive opera-
tions (i.e. mixed strategy) which consumes less power than the sole use 
of additive operations (additive strategy). In many cases, it is even more 
beneficial to use inverse operations and multiplicative inverses of whole 
numbers (inverse operation strategy).

As a matter of fact, there is a strategy which enables moving from a 
rational number a/b to a different rational number c/d in one move with 
power consumption less than one. Namely,

a
b

a x d
b x c

b x c
a x d

a
b

c
d

x÷ = = ,

where a, b, c and d are whole numbers and the magnitude of either a x d
b x c  

or b x c
a x d

 must be less than one. In the above case, this would mean moving 
from 4.2 = 42/10 to 9 = 9/1 using division by 

42 x 1
10 x 9

= 0.4666 ...

Figure 1. Two screenshots of NanoRoboMath
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However, we note that in the piloted version of the game, it was not pos-
sible to enter ultimately periodic decimal number representations, which 
restricts the use of this strategy. 

In the time mode, the player should choose arithmetic operations 
allowing the nanorobot to reach a given interval surrounding the target 
as quickly and effectively as possible. The player gains more points the 
closer the exact target the nanorobot gets and the faster the given target 
interval is reached. For example, it suffices to add 10 in order to quickly 
move from 4.95 close to the number 15. Of course, adding 10.05 would 
give more points if the player can calculate and enter this operation 
as quickly as adding ten. Hence, players must make strategic choices 
between approximate and precise calculations. It can be beneficial to 
roughly estimate the magnitudes of the rational numbers involved in the 
time mode and choose operations that arrive close to the target instead 
of spending time with precise calculations.

Within the game, the player has an opportunity to explore and experi-
ment with many kinds of rational number combinations. The aim of 
this kind of exploration is to develop well-connected knowledge about 
the relations between numbers and operations (Lehtinen et al., 2015). 
There are no categorically right or wrong moves although some moves 
get the player closer to the target and others do not. In this way, the 
game differs from the traditional drill-and-practise exercises and may 
therefore support adaptive rational number knowledge (Brezovszky et 
al., 2019; McMullen et al., 2020).

In both modes, the player can explore the effects of different opera-
tion-number combinations and may therefore be confronted with their 
misconceptions about multiplication (or division) always resulting in a 
larger (or smaller) magnitude outcome (Christou & Vosniadou, 2012). 
Understanding of the magnitudes of rational numbers is supported by 
indicating the positions on the number line and estimations of magni-
tudes are especially useful in the approximate calculations of the time 
mode tasks. Moreover, the dynamic, scalable number line representation 
used in the game might help students better understand that between 
any two rational numbers one can always find (infinitely) more and 
more rational numbers (Vamvakoussi & Vosniadou, 2012). This density 
concept is manifested in the game by zooming the number line when the 
nanorobot gets closer to the target. Hence, instead of just whole numbers 
there are tenths, hundredths, and thousandths shown in the number line 
depending on the distance between the nanorobot and the target. The 
multiple ways of representing rational numbers have been seen impor-
tant in promoting deeper conceptual understanding (Deliyianni & Gagat- 
sis, 2013). Representational flexibility is here supported by the number 
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line acting as an iconic representation, which enables recognizing the 
same mathematical object in both symbolic and iconic modes of repre-
sentation. The piloted version contains only levels with decimal notation. 
Fraction notation is included in the later versions of the game, where 
mixing decimals and fractions in one calculation will also be required.

In this exploratory case study, we consider some features of a proto-
type of the NanoRoboMath game in order to provide an understanding 
of the gameplay processes for further development of the game design. 
In particular, we aim to examine if students’ mathematical activities 
while playing NanoRoboMath suggest the game may support the desired  
learning gains. The research questions are the following:

1 To what extent does NanoRoboMath elicit rational number arithmetic 
practice?

2 What kind of playing strategies do players of NanoRoboMath use in 
their game play?

Methodology
The testing was carried out in October 2018. Four participants played 
the game individually using a PC in the presence of the first author.  
Description of the participants is given in table 1.

In this purposive convenience sampling, the first author asked four 
children in his circle of acquaintances to participate in the study. All 
players volunteered to play the game and they told that they used digital 
games also in their leisure-time. Only player D reported having diffi-
culties in school mathematics. This enabled us to better test the game 
with students in different mathematical levels. The participants played 
the game in a location that was convenient for them, which was the 
reasons for differing playing sites. The cases represented the planned 
target groups of the game. We assumed that 5th graders already have basic 
knowledge needed to play the game for strengthening understanding of 
the operations with decimal numbers. Moreover, 7th grade was assumed 

Player Age 
(years)

School 
level

Grade Session 
setting

Difficulties in 
school mathematics

A 13 secondary 7th home not reported

B 11 primary 5th home not reported

C 11 primary 5th home not reported

D 11 primary 5th school reported

Table 1. Participants of the study
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to be favorable as in the beginning of lower secondary school students 
are expected to comprehend rational number arithmetic and the teach-
ing of rational numbers in 7th grade is focused on increasing conceptual 
understanding and procedural fluency. 

The players were asked to play the game around 30–45 minutes. The 
basic mathematical task in NanoRoboMath game was to choose a suit-
able arithmetic operation and an operand in such a way that the nanoro-
bot moves along the number line from the starting position closer to the 
target position. In order to reach the target, the player had to use non-
integer rational numbers at some point. Arithmetic fluency (calculation 
speed) and ability to do approximate calculations were involved in time 
mode levels. The power mode tasks challenged the players to adapt their 
moves between additive and multiplicatively strategies in order to mini-
mize the magnitudes of the operands. The players had to deal with the 
increasing complexity of the target numbers from whole numbers to 
tenths and hundredths.

In order to ensure that the player understood the game mechanisms, 
the researcher first introduced the game by collaboratively playing with 
the participant (one introductory level each for power and time). After 
two introductory levels, the participant started playing the game inde-
pendently. During the game play, the researcher would remind the 
players about such game features as power consumption, assistance of 
the number line, and possibility of moving gradually towards the target. 
The researcher also gave suggestions about which level and mode the 
player could choose next, although the final decision was given to the 
player. In addition to the introductory levels, the tested game contained 
6 power mode levels with a total of 28 targets and 6 time mode levels 
with 29 targets. The levels were designed to be gradually more difficult. 
The power mode levels started with two levels involving halves, then two 
levels including quarters, one level dealing with tenths, and the final level 
involving hundredths. Time mode levels were designed similarly having 
two levels with targets close to whole numbers, two levels with targets 
near halves, one level where targets involved also quarters and the final 
level with tenths.

Data was collected using video-recorded observation, gameplay log 
data, and post-play interviews. Sessions were recorded using a digital 
video camera and Wondershare Filmora Scrn 2.0.1 screen recorder. The 
mathematical activities of the players were tracked using the gameplay 
log data and the video recordings. The analysis of the quality and quan-
tity of the rational number arithmetic practice in the game is based on 
the gathered gameplay data including playing time, completed targets 
and levels, and the different number–operation combinations used by 
the players. 
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The game strategies of the players in power mode tasks were analyzed by 
comparing their power consumption to three different reference values: 
1) the additive limit La , 2) the multiplicative limit Lm and 3) the inverse 
operation limit Li. These reference values for a power mode task are 
defined as follows. Let P be the starting position of the player and let T 
be the position of the target. Then

La  = |T – P|,

Lm = min (La , max ( T
P  , 

P
T   ( (,

Li   = min (La , 
T
P  ,  P

T   (.
If the player moves in a direct path from the starting position to the target 
position using additive operation(s), the nanorobot will consume power 
exactly the amount La. Note that this moving towards the target can also 
be done in several steps. The limit Lm corresponds to a playing strategy 
where the target is reached using one multiplicative operation instead 
of the additive ones (La ), when beneficial (min-function). However, the 
operand chosen by the player for a multiplicative operation in this stra-
tegy is always equal or greater than one (max-function). For obtaining 
the inverse operation limit, the player is capable of using multiplicative 
operands of magnitude less than one. This strategy corresponds to the 
playing performance described in the previous section where a task is 
completed in one move with power consumption less than one.

The game strategies in the time mode tasks were analysed by cal-
culating the accuracy of the player when reaching the target interval 
[T – 1, T + 1], where T is the target position. Denote by x the difference 
of the target T and the final position of the player. For the analysis, this 
difference was divided into four categories of accuracy: x = 0 (precise), 
0 < x ≤ 0.1 (high accuracy), 0.1 < x ≤ 0.5 (medium accuracy) and 0.5 < x ≤ 1 
(low accuracy). Here low accuracy indicates that the final position was 
closer to either T – 1 or T + 1 than the actual target T. Since the game uses 
decimal representations, one decimal difference from the precise target 
was chosen to indicate high accuracy. The frequencies of these categories 
in the time mode tasks were calculated for each player.

Results
We answer research question 1 by analyzing the amount and variety of 
arithmetic practice visible in students’ game play. In research question 2, 
the playing strategies refer to different types of sets of moves the players 
use in order to complete the game tasks. We analyze the use of additive 
and multiplicative moves as well as precise and approximate calculations.
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NanoRoboMath elicits rational number arithmetic
Time, number of completed levels, targets and moves along with moves 
and time per target for each playing session and game mode are given in 
table 2.

The variation of the playing time reflects to some extent the player’s 
motivation and commitment to play the game. In particular, player B 
engaged quickly and eagerly in the game, especially aiming to improve 
his scores in the power mode. He even replayed some of the previous 
levels in order to make new records and wanted to play the most difficult 
power mode level after the requested 45 minutes. By contrast, player C 
reported being tired and stopped playing already after 33 minutes. He 
was more inspired by the time mode levels and less interested or able to 
improve his scores on the power mode. In any case, based on the video 
analysis it is apparent that all the players were concentrating on the game 
and actively trying to complete the levels they played.

According to table 2, players A and B were highly involved in doing 
mathematics, since they were able to complete most of the targets and 
levels of the game. Also player C was able to complete almost half of the 
levels. The fact that the number of moves for player C is more than 40 % 
less than that for players A and B, is partly due to his shorter playing 
time. In order to compare the performance of the players, the moves per 
target as well as the time per target were calculated. We notice that the 
seventh grader A was able to play the game more efficiently than the fifth 
graders, needing fewer moves and less time per target. In the total sample, 
the power mode targets required more than twice as much time as the 
time mode targets and almost one and half times more moves than the 
time mode targets. The differences between the playing modes in moves 
and time per target varied across the players, being smallest for player A. 

Player D, although positive in her assessment of the game, had diffi-
culties with understanding the rational number arithmetic in the game, 
rather relying on whole numbers to navigate on the number line. Based 

Intro Power mode Time mode Total

Player Time Time Levels Target Moves Moves/
Target

Time/
Target

Time Levels Target Moves Moves/
Target

Time/
Target

Time

A 0.07.40 0.23.20 5 24 38 1.6 0.00.58 0.14.28 5 21 31 1.5 0.00.41 0.45.28

B 0.07.20 0.45.27 6 24 50 2.1 0.01.54 0.11.23 3 10 14 1.4 0.01.08 1.04.10

C 0.08.29 0.09.26 1 3 7 2.3 0.03.09 0.15.10 4 17 29 1.7 0.00.54 0.33.05

D 0.14.12 0.27.50 1.5 5 25 5.0 0.05.34 - - - - - - 0.42.02

Total 0.37.41 1.46.03 13.5 56 120 2.1 0.01.54 0.41.01 12 48 74 1.5 0.00.51 3.04.45

Table 2. The basic parameters of the playing events for each player
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on the parameters of table 2, the performance of player D was clearly 
lower than the performance of the other players. The first two power 
mode levels took a long time for her. She was not able to complete the 
second level and, in addition to one introductory time mode level, she did 
not have enough time to play time mode tasks later on. Nevertheless, the 
video recordings show that this is not due to lack of interest in the game 
but rather describes her ability to manage the rational number arithmetic 
in the game. Although player D was able to navigate towards a favorable 
direction and gradually approach the target with some scaffolding given 
by the researcher, moving along the number line with steps of less than 
one seemed to be a novel challenge to her. 

The number of moves and different number–operation combinations 
were used to examine player’s mathematical activity during game play. 
Table 3 shows that around three quarters of the total amount of 194 
moves were additive. There was a difference in the use of additive and 
multiplicative operations between the players (df = 3, χ2 = 14.77, p <.002, 
Φc = .28). Player C used less multiplicative operations than would be 
expected (standardized residual = -2.5). Also player D did not use many 
multiplicative operations but her total number of moves was low as well. 
The use of multiplicative operations was highest for player A. One third 
of her moves were multiplicative. 

The players used altogether 104 different number–operation combina-
tions, among which about 60 % were used only once in the whole sample. 
Each player contributed to this set of unique combinations (n = 65). 
However, there was a statistically significant difference between the 
players in the proportion of combinations unique in the whole sample to 
player’s total number of combinations (df = 3, χ2 = 10.15, p = .017, Φc = .27). 
Whereas the number of combinations unique in sample used by the 

Moves Additive Multiplicative Different combinations

Player Total + – x ÷ Total unique 
in 
session

unique 
in 
sample

A 69 25 21 14 9 51 42 22

B 64 24 23 14 3 48 41 24

C 36 23 12 1 0 28 24 17

D 25 9 13 2 1 16 8 2

Everybody 194 81 69 31 13 104 N/A 65

Table 3. Number of different types of moves and number–operation combinations 
in the sample
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players A, B, and C was over 40 % of their total number of combina-
tions, this percentage for player D was only 12,5 %, which is lower than 
expected (standardized residual = -2.0).

Similar difference was observed when number–operation combina-
tions occurring only once in the player’s game session were examined 
(df = 3, χ2 = 8.64, p = .035, Φc = .25). In the individual sessions of players 
A, B and C less than 20 % of the combination were used more than once, 
whereas half of the combinations of player D were used at least twice 
(standardized residual = 2.4). The above mentioned differences between 
player D and the other players might be due to the small total amount 
of moves and combinations of player D. Nevertheless, we conclude 
that the game elicits a good variety of arithmetical calculations, where 
the number–operation combinations are not extensively repeated in  
individual games or between different players. 

Those combinations which were overall used more than once (n = 39) 
are represented in the four-set Venn diagram of figure 2 in greater detail. 
There were no such combinations that were used by all four players. 
The largest overlap (17 joint combinations) was between players A and 
B who both played most of the targets of the game. This suggests that 
the game does not induce the players to find particular solutions for the 
tasks. Instead, it appears that the game design enables a lot of flexibility 
in choosing different possibilities to reach the target.

Figure 2. The distribution of the number–operation combinations
Note. The combinations used more than once in the whole sample are depicted in a 
Venn diagram where the sets A, B, C and D contain the combinations played by the  
corresponding players. The font size of the element describes its frequency f. Small font 
indicates f = 2, medium font f  = 3, 4, or 5 and large font f  = 6, 7 or 8.
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Among those combinations which were used at least twice, there were 
15 different number–operation combinations each for addition and sub-
traction. Division occurred only in three combinations and multiplica-
tion in six combinations. Combinations involving numbers related to 
the ten-base system (0.1, 1, 10) were used quite often. Also multiplica-
tion and division by small whole numbers (2, 3, 4) was frequent. On the 
other hand, there were some moves using multiplication by non-whole 
numbers and even by numbers with magnitudes less than one. No statis-
tically significant differences were found in the use of the four arithme-
tic operations between the two playing modes (df = 3, χ2 = 1.252, p = .741). 
Both modes were able to induce the players to use a multitude of number–
operation combinations.

Playing strategies in power and time mode tasks 
In order to analyze the different playing strategies we studied the player’s 
power use in power mode levels and accuracy in time mode levels. Figure 
3 describes each player’s power consumption in power mode tasks. There 
were altogether 25 out of 57 completed tasks where the power consump-
tion of the player equals the additive limit La. In those cases the player 
moved in a direct path from the starting position to the target position 
using one or more additive operations. As a matter of fact, only in 4 of 
these 25 cases did the player use more than one step to reach the target. 
One of these rare cases was made by player A when she used a strategy 
where the correct number of tenths and hundredths were reached by the 

Figure 3. The power consumption of the players in power mode tasks
Note. The categories indicate whether the power consumption of the task was less than 
(<), equal (=) or greater than (>) the inverse operation limit INV, the multiplicative 
limit MULT or the additive limit ADD. Since INV < MULT ≤ ADD, the categories are in 
ascending order with respect to power consumption. 
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first move and the correct number of units in the second move. On the 
other hand, a frequent strategy of player D was to gradually approach 
the target. This was also the case in both of her completed tasks with 
power consumption La. Moving from 15 to 7.5 she used three steps to 
get to the closest whole number (8) and three steps to get to the correct 
number of tenths.

Tasks where the power consumption is less than the additive limit cor-
respond to game play where multiplicative operations were used. Only 
players A and B appear to extensively use this strategy. Power consump-
tion greater than the additive limit corresponds to at least one move either 
going beyond the target or ending up further away from the target; typi-
cally due to a miscalculation. For example, player A was once confused 
by the decimal places and moved with tenths instead of hundredths. 
Player C used once multiplication in a situation where addition would 
have required less energy. Player D multiplied by 5 instead of 0.5. In two 
tasks of player A and in one task of player B and C, the power consump-
tion was greater than the additive limit, because the player mixed up the 
position of the nanorobot with the position of the bacterium and moved 
to the wrong direction.

In 14 cases the power consumption was equal to the multiplicative 
limit and the additive limit at the same time. This means that in those 
cases it was profitable to make a move using additive operations instead of 
a multiplicative operation with an operand greater than one. For example, 
moving from 3 to 1.5 using subtraction (– 1.5) requires less energy than 
division (÷ 2). Hence, multiplicative operations were used to reach the 
multiplicative limit in only six tasks. Multiplication by a number less than 
one gave rise to the three cases where the power consumption was less 
than the multiplicative limit. The inverse operation limit was reached 
once by player A (3 x 0.5 = 1.5) and once by player B (15 x 0.5 = 7.5). Player 
B used also a mixed strategy (9 x 0.3 = 2.7, 2.7 + 0.2 = 2.9), which caused 
the consumption to rise above the inverse operation limit although it still 
was clearly less than the multiplicative limit.

In the 13 cases where the power consumption was greater than the 
multiplicative limit but less than the additive limit a combination of 
additive and multiplicative operations were used in a flexible way. If the 
multiplication or division by a whole number was chosen wisely in these 
cases, the consumption was about 7 % – 38 % greater than the multiplica-
tive limit Lm. An example of such mixed strategy used by both players A 
and B was to move from 5.39 by multiplication by 3 to the position 16.17 
and then subtract 0.17 in order to reach the target 16. 

Based on these analyses, it is evident that the game play in power 
mode levels of players C and D clearly differed from the strategies used 
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by players A and B. Players A and B were able to use multiplicative strate-
gies in an effective way. In contrast, player C erroneously thought that 
splitting additive moves into multiple steps would decrease power con-
sumption. For player D, even the use of additive moves was challenging. 
If we compare the effectiveness of the playing strategies of players A 
and B, we notice the following differences. In power mode levels, 17 % of 
the tasks of player A and only 4 % of the tasks of player B exceeded the 
additive limit, whereas 33 % of the tasks of player A and even 54 % of the 
tasks of player B had power consumption less than the additive limit. 
These differences in the performance between players A and B with 
respect to the additive limit were not statistically significant (Fisher’s 
exact test = 3.01, p = .243). With respect to the multiplicative limit Lm , 
player B outperformed player A, but this difference was only marginally 
significant (Fisher’s exact test = 5.48, p = .054, Φc = .34). Whereas player 
A exceeded the multiplicative limit in 75 % of the power mode tasks, 
player B exceeded it in only 42 % of the tasks. It seems that player A was 
at first fluently using additive operations and not paying attention to 
power consumption. Later on, when reminded of this feature, she also 
started to use multiplicative strategies successfully. The tasks where the 
power consumption passed under the additive limit were more frequent 
towards the end of her session. Player B used multiplicative reasoning 
throughout his playing session and we could not observe changes in the 
ways of reasoning for him.

In time model levels, the difference between the players in the accu-
racy of reaching the target was clear. According to figure 4, player B 
precisely reached the target in most cases (72 %). Players A and C had a  

Figure 4. The accuracy of the players in time mode tasks
Note. The accuracy is described by the categories x = 0 (precise), 0 < x ≤ 0.1 (high  
accuracy), 0.1 < x ≤ 0.5 (medium accuracy) and 0.5 < x ≤ 1 (low accuracy), where x is the 
difference between the final position of the player and the target.
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different strategy where the difference of the target and the final posi-
tion of the nanorobot in the target interval varied more evenly between 
the different categories of figure 4. In 57 % of the time mode tasks of 
player A, the difference was not more than 0.1. The same accuracy was 
obtained by player C only in 24 % of the cases, none of them reaching 
the exact position of the target. The differences between the players A, 
B, and C in time mode tasks were statistically significant (Fisher’s exact 
test = 23.36, p < .001, Φc = .54). The amount of tasks where the target 
was reached precisely was greater for player B than would be expected 
(standardized residual = 3.8). 

Discussion
A goal in the design of game-based learning environments in mathema-
tics is to develop motivating games which offer more than just drill-and-
practice with a limited set of skills (Devlin, 2011). In particular, they 
should aim to fill a gap in existing instruction that may not be easily 
filled by other methods (Brezovszky et al., 2019). In the present study, 
we examined the design of a game aimed at promoting rational number 
knowledge. Our results indicate that the NanoRoboMath game was able 
to engage the players with rational number arithmetic. All players were 
actively focused on completing the tasks by moving along the number 
line with rational number operations. Although the average number of 
moves and time used for reaching a target varied between the players 
and game modes, we interpreted that this variation reflected the player’s 
capability rather than motivation to play the game. Some of the partici-
pants were able to adapt their strategies with respect to the core game 
mechanisms, i.e., to take into account the power and time consump-
tion features in their game play. Hence, we found a great deal of varia-
tion in playing strategies already across four students, indicating that the 
game may target a variety of mathematical skills. Moreover, we observed 
indications that the game may assist the learners in the transition from 
natural number reasoning to rational number reasoning (Ni & Zhou, 
2005) and it may also support their adaptive rational number knowledge 
(McMullen et al., 2020).

Both playing modes appeared to trigger mathematical activities that 
are not typical for the mathematics classroom (Lehtinen et al., 2017). On 
the one hand, time mode tasks elicited quick and approximate thinking, 
which may indicate the efficient integration of magnitude and arith-
metic knowledge. However, while some participants were able to use 
approximate magnitudes in their time mode estimation strategies, it 
is not clear how these activities would exactly affect their magnitude  
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representations. On the other hand, good performance in power mode 
tasks required an advanced understanding of the effects of arithmetic 
operations. Additive strategies were used by all the players, but multipli-
cative and mixed strategies were extensively used by two of them. They 
were even capable of using inverse operation strategies, which should 
strengthen the correct understanding of the effects of rational number 
operations on the magnitudes of the results. A common misconception 
is that multiplication always makes bigger and division smaller (Siegler & 
Lortie-Forgues, 2015) and the game may be suitable for confronting this 
misconception and support students’ learning about the effect of mul-
tiplicative operations with numbers less than one. However, the inverse 
operation strategy was observed rarely and we note that nobody used 
division by a number less than one. 

It was less clear from these students’ behaviors, how the game play 
would support students’ knowledge about representations and density 
of rational numbers, although these features were central in the game 
design. The lack of evidence of representational flexibility is due to the 
limitations of the current game design, and is expected to be better 
reflected in later versions of the game when both fraction and decimal 
inputs will be available. Density knowledge is also expected to be more 
clearly a feature of the gaming context in future versions that will include 
tasks that require approaching a number without touching. Nonetheless, 
it is possible that density concepts were tacitly supported during game-
play due to the zooming features on the number line, but this would have 
not appeared to be central in most gameplay activities investigated in the 
present study. Future studies that include either more detailed process 
data such as think-aloud protocols or learning outcome measures will 
better clarify if these concepts are supported by gameplay.

Both power mode and time mode tasks were able to induce the players 
to use a large variety of number–operation combinations. The observed 
combinations varied between the players and in individual games. A 
major part of the operations were additive, but also multiplicative opera-
tions were effectively used by some players. Different players used quite 
different combinations and the players did not repeat their combina-
tions frequently. Hence, instead of just drill-and-practice, the game seems 
to enable exploration with rational numbers by giving the player the 
possibility to discover different ways to reach the target. This kind of 
exploration aims at developing well-connected knowledge about the rela-
tions between numbers and operations. Needing to consider these rich 
arithmetic relations between rational numbers is expected to support  
adaptive rational number knowledge, as was found with natural numbers 
and a previous game-based learning environment (Brezovszky et al., 2019). 
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It is evident that the small sample size restricts the reliability and gene-
ralizability of the conclusions. In the game, knowledge about different 
aspects of rational numbers was needed for making choices between 
approximate and precise calculations in time mode tasks as well as 
between additive and multiplicative strategies in power mode tasks. In 
future, further studies should be made to confirm that the game elicits 
such flexibility and adaptivity with rational numbers which also enables 
students to use rich networks of numerical relations in their arithmetic 
problem solving outside this game setting (Lehtinen et al., 2015; McMul-
len et al., 2020). However, this study clearly suggest that the game pro-
vides a context for exploring different kinds of relations in a flexible way 
where it is neither necessary to find out certain pre-determined number–
operation combinations nor extensively repeat them. It certainly is out 
of the reach of this preliminary study to judge upon the learning effects 
of the game with respect to rational number knowledge. Moreover, the 
small sample size does not permit us to reliably identify the progress of 
the players in adapting their strategies with respect to the game modes. 
Nevertheless, the sample shows promising indications that the core game 
mechanisms work in a favorable way. Power mode tasks support mul-
tiplicative thinking and time tasks approximate thinking concerning 
the magnitudes of rational numbers. Moreover, the use of inverse opera-
tions gives some evidence of triggering changes in the misconception that 
multiplying always makes bigger. The development of the game conti-
nues based on the encouraging results of this preliminary analysis. Above 
all, explicit and large scale testing of the effectiveness of the game with 
respect to the learning goals is needed in the future.
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