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Fostering mathematical reasoning 
in inquiry-based teaching – the 

role of cognitive conflicts

dorte moeskær larsen and morten misfeldt

Students’ independent mathematical inquiry is often endorsed as a valuable teach-
ing method. In this article, we scrutinise in what ways these independent situations 
entail the students’ development of mathematical reasoning. We study the cognitive 
conflict in one fifth-grade class participating in an inquiry-based intervention study. 
The findings indicate that cognitive conflicts can support the students’ reasoning 
processes and that the environment has an important role in retaining the conflicting 
positioning by making the cognitive conflicts available for discussion and scrutiny. 
The students’ processes of resolving cognitive conflicts are stretched over time and 
involve different routes and exploring approaches and understandings.

A student’s reasoning competence is very important in mathematics and 
is often seen as fundamental for learning mathematics. Here, Ball and 
Bass (2003) argued that ”the notion of mathematical understanding is 
meaningless without a serious emphasis on reasoning” (p. 28). Indeed, 
reasoning can be seen as a basis for both mathematical understanding 
and communication and as a critical part of developing a mathematical 
approach that, for instance, appreciates convincing arguments (Ball & 
Bass, 2003; Carpenter et al., 2003; Hanna & Jahnke, 1996; Stylianides & 
Stylianides, 2008). In the literature, there is a clear distinction between 
reasoning in mathematics and reasoning in everyday life; an example 
of this is Harel and Sowder’s (1998, 2007) distinction between empiri-
cal proof schemes and formal proof schemes. Most students in primary 
school have empirical proof schemes, and research has shown that chang-
ing students’ empirical schemes to more formal proof schemes is highly 
nontrivial (EMS, 2011), and how to make the transition from empirical to 
more formal deductive reasoning is still open to further research (EMS, 
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2011). This transition is the specific interest of this paper. The idea in 
deductive reasoning is that students use a general rule they already know 
is true to argue for a new conjecture.

We wish to investigate students’ reasoning processes in this transition 
to gain insight into whether and in which way inquiry-based teaching in 
this regard proposes to support the transition to formal reasoning.

Many important documents and initiatives have pointed to the rele-
vance of inquiry-based science (IBSE), mathematics (IBME), and engi-
neering education (Artigue & Blomhøj, 2013) in primary school class-
rooms, where the students’ independent formulation and exploration 
of mathematical problems are the focal point of the teaching processes. 
Indeed, such an approach has been explored and developed in a number 
of project and initiatives (Cordis, 2021; PRIMAS, 2013). The question is, 
however, how the specific relations are constructed between situations 
in inquiry-based teaching and the reasoning processes in mathemati-
cal situations. Our interest in this relation led us to study the students’ 
independent reasoning situations in an inquiry-based teaching approach. 
When doing this, we realised that cognitive conflicts can play an impor-
tant – and sometimes positive – role in bringing the students from open 
exploration towards more directed exploration and reasoning – we refer 
to such conflicts as productive cognitive conflicts. We refer to students’ 
independent reasoning situations as cases where students are working 
independently; that is, alone or in small groups with little or no involve-
ment from the teacher. In these situations, the teacher typically initiates 
the activity. The teacher may typically move around between the groups 
of students to follow their process and is available to support them if they 
experience problems in their process.

Furthermore, we focus on situations where the students reason in the 
sense that they make conclusions or consider the validity of different 
approaches to bring them towards a conclusion, a solution or simply a 
better understanding of the situation.

In the current paper, we more closely examine how a cognitive con-
flict can entail the students’ development of mathematical reasoning 
when students are engaging in a mathematical inquiry. We follow how a 
group of students experience a cognitive conflict when they move from 
making meaning of a mathematical situation using different represen-
tations towards a more formal mathematical solution. We characterise 
the productive cognitive conflict and focus particularly on which aspects 
of the environment are important to promote the productive cognitive 
conflicts and the subsequent the development of mathematical reasoning 
that emerge from this. We ask the following research question:

	 What characterises productive cognitive conflicts when students 
work in independent situations with mathematics in inquiry-based 
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teaching, and in what way do these productive cognitive conflicts 
relate to students’ mathematical reasoning process?

In this paper, we first introduce the state of the art on inquiry-based 
teaching as well as the theoretical constructs on which we build our 
understanding of both students’ independent reasoning work and the 
cognitive conflicts that pupils can experience in such situations. Then 
we present the development project Quality in Danish and mathematics, 
which is the context of the investigation on which we report. After the 
theoretical and practical setup, we present the central empirical case 
on which we build our analysis. The case consists of one double lesson 
where students are working with triangles using physical manipulatives 
and digital tools. We analyse this case by focusing on cognitive con-
flicts. The result shows how cognitive conflicts, given the right mate-
rial and mathematical environment, can spur the learning of deductive  
reasoning in inquiry situations.

Inquiry-based teaching
Inquiry-based teaching is an instructional theoretical model that has 
been developed in several disciplines. The key idea is that the students 
must solve real or authentic problems about their educational activities in 
relation to science and mathematics (Artigue & Blomhøj, 2013). In rela-
tion to the learning of mathematics, the teaching of inquiry-based mathe-
matics has been the focus of a number projects and empirical studies in 
which different topics have been studied – e.g., the benefits (Bruder & 
Prescott, 2013) or the difficulties of the implementation (Dorier & García, 
2013; Engeln et al., 2013; Krainer & Zehetmeier, 2013; Larsen et al., 2019; 
Maaß & Artigue, 2013; Maaß & Doorman, 2013; Schoenfeld & Kilpatrick, 
2013). Also, in a Nordic context, several inquiry-based studies have been 
carried out, including the SUM project (Haavold & Blomhøj, 2019) and 
Learning communities in mathematics (Jaworski, 2006).

However, research on the relations between inquiry-based teaching 
and students’ transition from making an argumentation based on ratio-
nales and intuition to more deductive reasoning in mathematics has yet 
to be explored.

Within inquiry-based mathematics education, the teacher must guide 
the students to select appropriate experiences, to reflect on these experien- 
ces so that their educational potential actually emerges, to make the stu-
dents develop productive inquiries (Artigue & Blomhøj, 2013) and also so 
they can experience the limitations of their knowledge, hence creating the 
conditions for achieving the required cognitive evolution (Artigue, 2012).

In this article, the focus is on the student’s independent work in inquiry-
based teaching, but the role of different manipulatives and artefacts will 
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also be included. This focus is in line with Artigue and Blomhøj (2013) 
that concluded that inquiry-based teaching includes giving autonomy 
and responsibility to students, inclusive of a large focus on the experi-
mental dimension of mathematics. The idea behind inquiry-based teach-
ing is that students learn more and better when they can take control 
of their own learning by defining their goals and monitoring their own 
progress when making the inquiry. This must, of course, take place with 
a teacher’s guidance. Experiments in inquiry-based teaching can have 
many approaches, but often, when conducting an investigation, different 
kinds of manipulatives, representations, or other resources are included 
in the experimentation, where the context of the investigated problem 
is also essential (Baptist, 2012).

Proponents of inquiry-based mathematics often take a constructivist 
approach, suggesting that students construct knowledge following the 
lines of work of professional mathematicians. Indeed, mathematicians 
often face nonroutine problems and make investigations where they 
must search for information and develop conjectures that they then must 
justify and finally communicate the results (Artigue & Blomhøj, 2013). In 
this paper, we take a cognitive and constructivist perspective to articulate 
cognitive conflicts as defined by Piaget (1977) and Tall (1977). It would be 
possible to take a more social perspective focusing on practices and norms 
(Yackel & Cobb, 1996) or on the commognitive conflict configurations 
(Sfard, 2008); however, to focus our analysis on the cognitive conflicts, 
we chose not to include the more social perspective; rather, we focus 
on the interplay between the physical surroundings and representations  
on one side and the students’ articulations on the other.

Independent and adidactical situations
In using the word independent situations, we refer to those situations 
where students either individually or often in groups perform an investi-
gation and where the teacher is minimally present or present as a guide to 
help if needed. We use the notion of independent situations from Blomhøj 
(2016). He uses the term in three steps of inquiry-based teaching: 1) 
staging the problem, 2) students’ independent situations and inquiry, 
and 3) whole-class discussion and reflection. Using Blomhøj’s notion in 
the terminology from the theory of didactic situations (Brousseau, 2006), 
these situations will be defined as adidactical situations, which are situa-
tions in which the student takes a problem as his or her own and solves 
it based on its internal logic and not in the light of the teacher’s control. 
By using the term independent situations, we want to make clear that 
these situations sometimes are without the requirements that Brousseau  
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(2006) set for a situation to be defined as an adidactical situation. For 
example, the student must be engaged in a game, and ”this game being 
such that a given piece of knowledge will appear as the means of produc-
ing winning strategies” (Brousseau, 2006, p. 57). This is not always the case 
in independent situations observed in inquiry-based teaching. However, 
in adidactical situations, the student should not be aware of the teacher’s  
intentions about the knowledge underlying the situation. This might 
also be the case in the independent situations in inquiry-based teaching; 
however, the teacher’s role in both situations is to organize a milieu for 
the students to engage with and then withdraw from the scene. In Brous-
seau’s terminology, this will be in ”the situation of action” (Måsøval 2011). 

By using the notion of independent situations, we want to clarify 
that we have a broader focus than the specific adidactical situations that 
Brousseau describes. In independent situations, the teacher can also be 
in dialogue with the students and groups in small delimited periods of 
time but without taking control of the processes.

Cognitive conflicts
In addition to inquiry-based teaching, another learning perspective indi-
cates that cognitive conflict is an instructional strategy to promote stu-
dents’ conceptual change. The notion of ”cognitive conflict” is in line 
with Piaget’s theory on cognitive development (Piaget, 1977). According 
to Piaget, a learner constructs new knowledge when he or she encounters 
input from the environment, and when the new assimilated informa-
tion conflicts with previously formed mental structures, the result is a 
cognitive conflict that motivates the learner to seek change and develop 
new mental structures. It represents the learner’s adaptation to the envi-
ronment’s input. Inconsistency between newly realised information and 
the students’ conceptualization of previous experience will therefore 
present a potential cognitive conflict. However, such an experience will 
only become a cognitive conflict when explicitly invoked by the students, 
because the students may simply dismiss or treat this conflict as an excep-
tion (Zazkis & Chernoff, 2008). A cognitive conflict is only invoked when 
a learner accepts that there is a contradiction that needs to be dealt with. 
The alternative is that these two contradictory theories continue in the 
students’ understanding as two parallel theories as the student fails to 
see that there is a conflict.

Cognitive conflicts are described in mathematics education, where 
Tall (1977) stated that understanding in mathematics often occurs in 
significant jumps that are accompanied by a clear sense of comprehen-
sion rather than a smooth and steady process; Tall (1977) used cognitive  
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conflict to explain that after meeting these conflicts, the learner must 
restructure his or her mathematical schema and restructure them in 
an appropriate manner. The starting point of the process of reshaping 
and restructuring this new knowledge is the students’ naïve knowledge 
(Dreyfus et al., 1990). Indeed, implementing a cognitive conflict as a 
way of teaching has been reported in a variety of topics in mathematics  
education (Zazkis & Chernoff, 2008).

Zazkis and Chernoff (2008) described an example where cognitive 
conflicts are used to help students face their misconceptions. In one of 
their examples, a student is asked to simplify 13 · 17

19 · 23 . The student starts 
by multiplying the numbers in the numerator and the denominator and 
get 221

437 . The student now starts to search for common factors in the 
numerator and the denominator, but after a while concludes that ”two 
prime numbers multiplied by each other are primes” (Zazkis & Chernoff, 
2008, p. 200). The teacher then uses a pivotal example by asking if 15 is 
a prime. This makes the student acknowledge her misconception and 
disproves her suggestion.

The Quality in Danish and mathematics project
The observed class participated in a design-based, developmental and 
random controlled intervention experiment called Quality in Danish and 
mathematics (KiDM) (Hansen et al., 2019). The aim of KiDM was to 
make mathematics teaching in Danish compulsory schools more inquiry 
based. The overall KiDM programme had several stages that started 
with surveying the literature on inquiry-based teaching in mathematics 
and conducting some qualitative interviews with teachers and super-
visors (Dreyøe et al., 2017; Michelsen et al., 2017) and then developing 
an inquiry-based teaching programme for a four-month mathematics 
teaching approach for both primary school year four and year five, which 
afterwards was implemented in 145 classes. All the activities in the inter-
vention were all built around a simple three-phase model, where 1) the 
teacher introduced a problem/investigation, 2) the students themselves 
made an inquiry with minimal guidance from the teacher – the inde-
pendent situations – and, 3) the activity ended with a whole-class discus-
sion. The KiDM project was created as a random controlled trial (RCT) 
where approximately the same number of control schools and interven-
tion schools were randomly selected with respect to their geography, size 
and ethnicity (Hansen et al., 2019). At the control schools, the interven-
tion was not carried out and the intention was that they should continue 
their normal teaching; however, the control schools received the same 
before and after tests as the intervention schools. The programme also 
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encompasses collecting qualitative data that included classroom-video 
observations from the intervention schools; it is these observations that 
form the basis of the present study.

Observations from the KiDM experiment
The observations used in the current study were collected in one year 
five intervention class. The class was randomly selected to be part of the 
KiDM project and chosen to be observed because their teacher volun-
teered at a kick-off meeting for the project. It was important that the 
teacher volunteered as cooperation was needed because the intention was 
to observe the class once a week over four months (16 lessons). It is impor-
tant to emphasise that this teacher, therefore, was not selected because 
of his specific abilities or special interest in inquiry-based mathema- 
tics. However, because of different practical issues in the class, the final 
number of lessons recorded in the class was seven double lessons. All the 
observed lessons were transcribed in full by two preservice teachers and 
the first author of this article.

In the observed lessons, the camera followed one group of students, 
and the group was chosen in collaboration with the teacher with the 
intention of the group being robust and not immediately disturbed by 
the camera. The current paper presents one double lesson. This specific 
lesson is presented as it clearly shows the students’ independent work 
with different representations and manipulatives and allows us to see 
an example of how these representations relate to a cognitive conflict.

Presenting one double lesson
The observed lesson from the KiDM project follows the three-phased 
progression envisaged. The activity used can be found on the KiDM 
website (KiDM, 2017). The lesson will first be described with specific 
quotes from the teachers and the students and afterwards analysed.

The case of ”rope-triangles”
This activity focused on conducting a systematic examination of diffe-
rent triangles. The activity was also used in other classes and analysed in 
the Danish part of PRIMAS (Artigue & Blomhøj, 2013). The intention 
was for the students to find all the possible triangles (whole number on 
the sides) with a rope of a circumference of 12 metres (and a knot tied at 
each metre); in this process, the students should learn about the triangle 
inequality. The triangle inequality states that in any triangle, the sum 
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of the length of the two shorter sides is always larger than the length of 
the longest side.

In this case, the teacher introduced the double lesson by talking about 
different kinds of triangles (right-angled triangles, obtuse triangles, acute 
triangles, equilateral triangles and isosceles triangles). The key problem of 
the lesson was then introduced to the students by first asking them how 
many integer triangles they think they can make with a 12-metre-long 
rope. The students were then invited to make guesses that the teacher 
wrote on the blackboard, after which he or she briefly introduced the 
students to how they could subsequently draw the triangles in GeoGe-
bra. The situation where the teacher facilitates a guessing process is not 
an independent situation, but it is the first step towards the students 
subsequently having to examine and for themselves whether their guess 
is correct.

The students then were handed the ropes in groups of four or five and 
started making different kinds of triangles outside their classroom. An 
example of students doing this activity is shown in figure 1.

These introductions are in line with the teacher guide. The assumption 
in the teacher guide is that the students, by using the rope, will discover 
that it is not possible to construct a triangle with a side length of seven 
or more metres. Furthermore, the guide assumes that it is not until the 
students must draw the triangles into GeoGebra that they will discover 
that it is not possible to draw triangles like 6-3-3 and 6-4-2, because in 
most cases the rope can stretch a little on one of the sides, while it may 
be less stretched – curved downwards – on another side. So, it looks like 
a triangle though it is very flat. In GeoGebra, on the other hand, it is not 
possible to form these triangles; they will constitute a straight line.

Figure 1. Students investigating rope triangles (picture from www.kidm.dk)
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The students Ella, Alma and Nikolaj quickly found that by standing in 
different formations, six different ”triangles” can be made: (4-4-4; 2-6-4; 
2-5-5; 6-1-5; 6-3-3 & 5-4-3). In the process, the group tried to see if it is 
possible to make a triangle where one side is seven metres long, which 
they quickly reject because the rope cannot be stretched this way. They 
then went back to the classroom, and without any intervention from the 
teacher, they started to use GeoGebra to check if it was possible to draw 
these triangles. Ella drew some triangles in GeoGebra, but when drawing 
the ”triangle” 1-5-6, she experienced some problems. However, she quickly 
announced that: ”they all work”. Ella’s figure can be seen in figure 2.

The teacher afterwards pointed at the 1-5-6 triangle and asked her, ”Are 
you sure that this is a triangle?” Ella answered, ”Yes because it has three 
sides”. When Nikolaj tried to make the 1-5-6 triangle in GeoGebra, he 
said, ”That is not a triangle”. Ella answered him by saying, ”But it has 
three sides”. The third student (Alma) announced, ”It is very ugly – I am 
not able to make this triangle”. The conversation continued as follows.

Nikolaj:	 Try to see mine!
Alma:	 That one is also very ugly.
Ella:	 [looking at her own triangle] Okay, maybe now it fits better.
Nikolaj:	 [asking loudly to their teacher] We are finished, what should we do 

now?
Ella:	 I would say that it is a triangle because it has three sides but wait a 

second … Wait a second … It does not fit. No, Nikolaj wait, it is not a 
triangle because these two (points at two sides) are not long enough 
to come together. That is why I don’t think it is a triangle. Those two 
together have the sum of six, and that is why it is not a triangle, so 
Nikolaj, it does not fit. There are only four triangles.

Nikolaj:	 But what about this drawing?
Ella:	 But it does not fit because this small space here shows that because 

1 + 5 this is 6, and 6 + 6 is 12 or 5 + 1 this is 6, so it does not fit because 
then they are equal.

Figure 2. Ella’s drawing of the ”triangle” 1-5-6
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Nikolaj:	 Arhh okay!
Alma:	 But then, we need to find new triangles.
Ella:	 Yes, and 7 does not work still. The number cannot be 6 or bigger than 

6 because then, it does not fit at all, but I do not understand why that 
one fits [points at the 6-4-2 triangle].

Nikolaj:	 What?
Ella:	 I do not understand why that one fits – this one with 6-4-2 – when 

the other one does not fit [Ella draws the triangle in GeoGebra again]. 
But Nikolaj, try to see here – this one does not fit either.

Afterwards, the group tried to find new triangles by using GeoGebra, but 
they did not have any success.

Ella:	 If you started with 2 as the first line, then there could be one with 4, 
so no, it can only be 5 and 5 – we have that one. Okay, then we go on 
and take 3 as the first line and then 4 and 5, and we also have that one. 
3-2 and then there must be 7, but it cannot be done. 3 and 5 and then 
the last is 4 – we have made that one. Then, we move on to 4 for the 
first line and then 6 and 2, but it cannot be done either. Then, there 
are 4, 5, and 3, which we have. And 4 and 2 do not work. And 4 and 
4 and 4, we have that one. Then, 5 as the first line and 2 and 5 – yes 
and then 5-4-3 we have. We cannot find any more. And if we get to 6, 
then it doesn’t fit anymore.

The lesson ended with a very brief summary where the teacher com-
ments on the 6-3-3 and 6-4-2 triangles and starts to present the triangle 
inequality in an informal way.

Different cognitive conflicts in the students’ reasoning processes
After a thorough introduction, the students believed that they could 
construct many different triangles with the rope, but after the students 
experimented with the rope, they realised that this was not the case. This 
was done in a setting where the students were outside the classroom in 
the schoolyard and worked independently in their own in a group, with 
no involvement from the teacher.

The activity with the rope showed the students that it is not possible 
to make a triangle with a circumference of 12 that has a side of seven or 
larger because then, the rope cannot be stretched out any further. In this 
situation, the rope visually helped the students identify this cognitive 
conflict. Here, there is a conflict between what the students thought (all 
triplets x, y, z where x + y + z = 12 are possible; see step 1 in figure 3) and 
what the rope actually showed them (a side of seven or larger is not pos-
sible; see step 2 in figure 3). It was, however, still possible for the students 
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to make a 1-5-6 ”triangle”, a 6-4-2 ”triangle” and a 6-3-3 ”triangle” with 
the rope, even though it looked a little flat. The students’ work with the 
rope does not make it clear that this is impossible, and the students were 
still not aware of the triangle’s inequality. However, when the students 
then worked in the GeoGebra programme, some of them became more 
suspicious and sceptical; the 1-5-6 ”triangle” did not fit very well, and ”it 
looks ugly”, but they still – after some discussion – concluded that the 
triangles with a side of six still work (see step 3 in figure 3). In this situa-
tion, the cognitive conflict that was intended to arise when trying to 
construct the ”triangles” in GeoGebra and they did not appear, at least 
in the first case. The teacher, however, observed this and intervened by 
asking Ella if she was sure that the 1-5-6 triangle was a triangle. Initially, 
this does not trigger any response from Ella, but after a while, by studying 
the drawings in GeoGebra again, she suddenly realised that the triangles 
with a side of six do not work either. Her arguments this time were not 
based on the rope or GeoGebra drawings but rather on the fact that the 
two sides ”1” and ”5” summed up to the same length as ”6” – the other 
side of the triangle – and that means the sides coincided. This argument 
involved more formal mathematics in the understanding of the triangle 
inequality (step 4 in figure 3) when she argued that the sum of the two 
sides became the same as the last side (1 + 5 is 6 and then they were equal). 
Afterwards, the rest of the group now wanted to find more triangles, 
and these initiatives led Ella to finally come up with a systematic argu-
ment for how many triangles they could find with this rope, explicitly  
articulating the triangle inequality (step 5 in figure 3).

Figure 3 illustrates the steps in Ella’s reasoning process, with the dif-
ferent elements affecting the process exemplified by blue arrows. Ella’s 

The rope is 
not streched 

out with sides 
greater than 7

The drawings 
in GeoGebra

The teacher 
asks a  

question

The students 
in the group 
want to find 

more triangles

Figure 3. The reasoning process in the rope-triangle activity
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initial understanding was that it is possible to make many different  
triangles and that there were no geometrical constraints apart from the 
fact that the circumference should be 12. However, based on the interac-
tions with the environment, Ella realised that the triangles’ sides should 
be less than seven. Later – because of the interactions with GeoGebra – 
the conflict became overt, and the students discussed if 1-5-6 was actually 
a triangle. Helped by the teacher, Ella realised the triangle’s inequality, 
and because she needed to explain her reasoning to the group, she finally 
constructed an argument for the number of whole number triangles with 
a circumference of 12.

The example shows that the cognitive conflict that exists in the ana-
lysed episode is productive and important in relation to the students’ 
mathematical reasoning processes. In this sense, the cognitive conflict 
is the driving force for the students’ reasoning processes, where the envi-
ronment has the role of retaining the conflicting positioning, and making 
them available for discussion and scrutiny. The process of resolving a 
cognitive conflict is – at least in the examples provided here – a process 
stretched over time and one that does not necessarily entail large, sig-
nificant jumps in the students’ understandings but rather small steps 
towards resolving the conflict (steps 1 to 5 in figure 3). We suggest that 
it makes sense to view these small cognitive conflicts as elements in the 
students’ reasoning processes.

Cognitive conflict can support reasoning
In the analysed situation, Ella experienced a cognitive conflict between 
the manifestation of the triangle’s inequality as ropes and as part of the 
GeoGebra mathematical environment. This situation spurred Ella’s 
mathematical reasoning because her initial rationale (i.e., it is possi-
ble to create all sorts of triangles) was confronted with reality: first in 
the situation with ropes, where she was able to accommodate her ratio- 
nale to the empirical situation without creating a cognitive conflict, and 
later in relation to GeoGebra, where her rationale became difficult to 
maintain. In this specific situation, Ella was able to experiment with and 
explore her (partly wrong) rationale (i.e., it is possible to create all sorts of  
triangles). Hence, the conflict with the mathematical reality expressed 
in GeoGebra is deeper than if she was confronted with just the triangle’s 
inequality or the GeoGebra environment. This seemed to increase Ella’s 
motivation for engaging in mathematical reasoning. Looking at the lite-
rature about reasoning in mathematics education, it has mainly focused 
on characterising the different types of argumentation and reasoning 
(Brousseau & Gibel, 2005; Harel & Sowder, 1998, 2007) and less so about 
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what makes students engage in reasoning processes and how to make 
the transition from making an argumentation based on rationales and 
intuition to more deductive reasoning (EMS, 2011). We suggest, however, 
that Ella’s inclination towards more deductive reasoning was spurred 
by a cognitive conflict and that deeper and more articulated conflicting 
understandings were the larger the internal motivation for addressing 
this conflict with mathematical reasoning. 

A good environment retains a cognitive conflict
One of the things that makes Ella’s experience particularly strong is that 
her wrong understanding/rationale was accommodated in the first explo-
ration and her work with the rope. Therefore, Ella had a justified trust 
in her own rationale that made it more difficult – we can imagine – to 
give up this reasoning afterwards. By supporting the fact that Ella must 
retain and reinforce her rationale while also experiencing that it cannot 
be true, this pressed Ella to address the conflict. Students can typically 
and easily dismiss conflicting views as exceptions and disturbances that 
do not need to be taken into account (Zazkis & Chernoff, 2008); hence, 
the cognitive conflict must be explicitly invoked by the students. There-
fore, the material and representations that support productive cognitive 
conflicts become more important because the students are more inclined 
to realise a conflict if the material and representations for conflicting 
views are present at the same time and if the students independently have 
explored these conflicting views. In the analysed episode, the conflicts 
were retained by the material aspects of the environment and activi-
ties, such as the rope exercise and the GeoGebra exercise. The material 
aspects of the environment used in the lessons played an important role 
in producing cognitive conflicts because the materials – here represented 
in a visual way – advocated for the conflict, and the feedback from the 
materials had different weight/power in the reasoning process. The feed-
back from the rope did not make it possible for the students to realise 
that the sides in the triangles could not be six or larger and neither did 
the exercise in GeoGebra, but all together, including the teacher’s hint, 
these items forced Ella to resolve the cognitive conflict and understand 
the triangle’s inequality.

Resolving cognitive conflicts nevertheless takes time. Ella experienced 
what can be described as a eureka moment when she realised the triangle’s  
inequality. This, however, did not happen as a response only to the envi-
ronment she was engaged in at the time (the GeoGebra activity). We 
suggest that this moment also can be credited to the work that Ella did 
with the ropes, where she experimented with and reinforced her ideas 
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about all the triangles they could make. In this sense, the quick realisa-
tion of how a conflict can be resolved is due to all the work that goes into 
exploring, articulating and reasoning about the different understandings 
that were in conflict. In this sense, the manifestation of conflicting views 
that can lead to student reasoning becomes a central design parameter in 
inquiry-based mathematic education.

Discussion and implications
Today, there is a common understanding that there must be an imme-
diate learning benefit from all activities that students work on in the 
classroom, as in, for example, the goal-oriented approach towards teach-
ing (Hansen, 2015). This may entail that if the students do not arrive 
immediately at a solution, the teacher will interrupt and give them the 
answer. However, it also entails that teachers will not allow for complex 
– perhaps not immediately solvable – tasks in the lessons, which, in addi-
tion to suppressing a natural urge to investigate, also denies the students 
the chance to construct the answer themselves by using productive cog-
nitive conflicts, which can take time to resolve. During the KiDM inter-
ventions, we experienced teachers who would not apply the triangle-rope 
activity because the students were able to make ”not triangles”, like the 
3-3-6 triangle. They found this prevented the students from coming to 
understand the triangle’s inequality because the students – at least for a 
short period – had an incorrect understanding. Therefore, it is necessary 
for mathematics teachers to be aware that resolving a cognitive conflict 
can include small steps and will take time. The teachers need to be patient 
before they interact and interrupt the students; otherwise, it will destroy 
the students’ motivation for making their own inquiries and to be part 
of the reasoning process, possibly preventing a deep understanding of 
the target concept.

Additionally, it is important that the teachers plan ahead so that the 
material aspects of the environment advocate for resolving the con-
flicts. It is not necessary that the material aspects provide a definitive  
resolution, but they must advocate for a later resolution.

Conclusion
By analysing video observations from one year five primary school mathe-
matics lesson where the teacher used an inquiry-based approach, we were 
able to study the students’ reasoning process and characterise the stu-
dents’ cognitive conflicts. We found that productive cognitive conflicts 
are important to mathematical reasoning because they can be seen as the 
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motor that helps the students in their transition from empirical to more 
formal deductive reasoning in inquiry-based teaching. In these cases, 
the environment will have an important role in retaining the conflicting 
positioning, making them available for discussion and scrutiny.
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