
ARIPUC 19. 1985. o. 1--.:L·

S P L • A S P E E C H

P R O G R A H H I N G

S Y N T H E S I S

LANGUAGE

Peter Holtse and

Anders Olsen*

This re.Dort describes t.l?e first vers1on ol a IJ1<:7/J
t eve{ comouter 1.Jropramm 717!1 t an!]uape for exoer i
ments vith s_vnt/Jetic soeec!J.

Jn SPL a context sensitive oarser is oroprammed t(~
reco9nize t in9uist1c c"nstructs in an 1nout
str inp. Bot/J t/Je struc,urat and o/Jonet1c descr 10-

tions ol the reco9n1zed structures ma_v be mo(.17fied
under orogram control. The f7nat outout ol an .5"PL
oro9ram is a ,1ata stream caoabte c•l drivin<:7 a
oarametr ic sL">eech s.vnt/Jes izer.

The notation used 1 s based on the or ,nc iot es· known
from Chomslv and /latte 's "The Sound Pattern or"
£n9tis/J". T/Jis means that in orinci1.,te att
t inpuistic constructs are oro_orammed in sepmentat
units. llovever, 1n .. "1-PL certain macro rac1tities
have been orovided for more comot 1cated w11ts sucn
as s_y/ t abt es or vords.

1. INTRODUCTION

A special programming language for experiments w1 th ph0no
logical rules rn general and speech synthesis rn particular
is currently being tried out rn our laboratory as part or a
pro'iect to develop a Dan_ish text-to-speech synthesis system
lcf. Holtse(1982)).

• *The Telecommun1cat1ons Research Laboratorv. Copenhagen

2 HOLTSE & OLSEN

The first part of the present paper describes in broad terms
the philosophy and concepts of the programming lan9uage
while the last part contains the formal syntax definitions.

The idea of coding phonological rules directly into a d1g1-
tal computer is not new. of course. In some way or other
special programming tools have been developed in mo$t
laboratories working with speech synthesis by rule. Thus.
various rule testing programs have been descr1b~d. e.g.
Bobrow and Fraser < 1968) and Basb0l l and Kristensen t 197 4.
1975). Furthermore. several comoilinq and/or interoretinq
systems have been developed. for instance Hertz .< 1982) ~
Carlson and Granstrom Cl 97 4) . and Kerkhoff et al. (1984.J.
These systems allow rules to be formulated in notations verv
like the style commonly used by linguists and phonologists.

While the early rule programs were mainly concerned with
creating an environment for testing phonological rules. the
later systems have tried to include facilities for direct
manipulation of speech synthesizer control parameters via
rule statements. Thus. the system described by Hertz (1%2)
is a complete interactive synthesis development system
including a rule interpreter whereas Carlson and Granstrom
describe a compiling language which can produce an entire
text-to-speech conversion system.

The present paper def rnes a programming language (SPL for
Synthesis Programming Language) very much like the one
described by Carlson and Granstrom. In fact the whole pro
ject owes much to their ideas and experience. The language
is. like most languages of this kind. based on the notation
introduced by Chomsky and Halle (1968) in The ... i,ound A.'1ttern
oI Eng-lis/J. The choice of this - maybe outdated - nota
tional representation 1s not based on a firm conviction of
the superiority of segmental descriptions over other more
sophisticated ways of describing speech. But the segmental
approach has the merit of being- relatively widely accepted
by linguists and phoneticians as one possible way of
expressing phonological regularities. even if 1t is rarely
the most elegant way. Also. since 1t is possible - with a
bit of fiddling - to describe most phonologically relevant
entities in terms of segments this approach 1s quite attrac
tive as a basis for a general programming language so as to
avoid hardwiring too many defim tions into the language.
And finally. the single level description 1s relatively easy
to implement on a digital computer.

1.1. SCOPE OF THE LANGUAGE

SPL is intended as a tool for expressing regular ohonolog1-
cal and phonetic rules. It could be used to write part of a
text-to-speech system. or part of the hypothesis verifica
tion component(s) of a speech recognition· system. Or 1t
could be used directly for phonetic or phonological
research.

SYNTHESIS PROGRAMMING LANGUAGE .3

Since an SPL oroaram wili accept normal orthography as input
and is capabie of directly driving a parametric speech syn
thesizer an entire text-to-speech system could. in princi
ple. be coded in ::;PL. However. certain problems normal 1 y
encountered in such systems are better dealt with rn special
orthographic preprocessors. Thus. since only regular
expressions can be formulated in SPL srngle word exceptions
to general rules or exceptionally weird orthographies are
relatively expensive seing that they may need an entire rule
to handle each word. Also. abbreviations. acronyms etc. can
probably be dealt with more efficiently by general text
preprocessors. although they may. of course. be handled via
rules. Molbaak (1982) contains a detailed discussion of
various strategies for handling these problems.

Finally. it should be noted that the SPL is not well suited
for parsing larger linguistic umts - primarily because it
has no facilities for dictionary look up and cannot deal
with even the most rudimentary kind of semantic information.
This deficiency may turn out to cause difficulties with e.g.
sentence stress in certain languages.

2. SURVEY OF THE LANGUAGE

This section gives a brief survey of the structure and con
cepts used in an SPL program. The chapter is intended as an
informal description of the language - not a programmer's or
user's manual. The complete formal definition of the SPL
syntax is included as a separate section.

2.1. PROGRAM STRUCTURE

An SPL source oroaram consists of two ma,or components: A
data declaration component and a rule description ·component.
All data structures needed within an SPL oroaram must be
explicitly defined before they may be used-either in rules
or rn other data declaration statements. i.e. forward refer
ences are not allowed. In the rule component the rules are
described which transform an inout text str1no first to a
string of phonetic symbols and then to synthesis control
parameters.

The actual transformation of a text string is effected in
three stages:

During Stage
Phones - the
rule program.
until all the
entered.

One the input characters are translated to
internal represent.at 1 on used throuahout the
Then the Phones are loaded into a work buffer
characters of a complete sentence have been

In Stage Two the rules of the rule comoonent are aoPi ied rn
succession to the string of Phones rn the work buffer. Each
rule 1s applied to all the Phones of the buffer in a left to

4 HOLTSE & OLSEN

right fashion before the next rule comes into play. The
rules may add additional Phones to the buffer or delete
Phones from the buffer. or they may change the descriptions
of the Phones in the buffer. In this way the contents of
the buffer is gradually changed into a more and more
detailed description of the utterance originally entered as
text input.

When all the rules have been applied. the buffer should con
tain the equivalent of the acoustic segments of the utter
ance. and the oroqram enters Staqe Three. Durinq this staqe
the segmental -chunks now contai-ned in the work. buffer are
interpolated and reformatted. and a file is output which
contains the control code necessary to make the target
speech synthesizer produce the utterance in question.

2.2. DATA TYPES

SPL at.tempts to impose as few restrictions as possible on
the way a user can describe his linguistic theory. There
fore, the language contains no built in notions of what. for
instance. a syllable or a word should look like. The only
predefined phonological units within SPL are Distinctive
Features and Phones. i.e. the system is basically segmental.
However. quite complicated segemental sequences may be
described via structure t_vpes (q. v.) and later referred to
as syllables of various kinds etc. so that. to some extent
at least. the limitations of using a segmental environment
are removed. The important point is that the proper defini
tion of such units is left entirely to the user/programmer.

2.2.1. Features, Scalars. Parameters and Phones

The basic unit within an SPL program is the Phone which at
the input end is a segmental entity roughly corresponding to
a letter or a phonetic symbol. During Stage Two. applica
tion of the rules. this description is gradually refined so
that at the output stage each Phone corresponds to a
separate acoustic segment. Thus. an aspirated stop will
typically consist of three Phones at the output stage: cio
sure. explosion. and aspiration.

A Phone consists of a structural part and an optional seg
mental oart. The structural oart serves to describe pri
marily the phonological properties of the Phone. while the
segmental part contains a description of the physical pro
perties associated with the realisation of the Phone.

The structural properties of Phones are described in terms
of £J.ist.inct.ive Features l or Just Features). Features are
binarv entities which assume values of olus or m.1nus to
indicate the oresence or absence of a - certain orooertv
within the Phone. Examples of Features are con .. ~on,~nt,,-d.
vocalic. syllabic. or l,t:Jiuitl. For instance. the consonants

SYNTHESIS PROGRAMMING LANGUAGE 5

.b. p. or m might all be classified as [+labial] to rnd1cate
that they belong to the class of consonants articulated with
lip closure.

Features are combined to form Matrices. e.g. [+voc. -cons.
+syll]. Note. however. that while feature matrices in seg
mental phonology are traditionaily written in columns. SPL
Matrices are written in a linear fashion in reverence to the
limitations imposed by most computer text editors.

Each Phone is. in principle. defined by a unique matrix of
Distinctive Features. However. the values of certain
Features may be irrelevant to a particular Phone. For
instance . the value of the Feature "stress" could in some
cases be considered irrelevant to consonants since stress
may in some connections be regarded as a property associated
with vowels. In cases like this the values of the
irrelevant (or redundant) Features may be left undefined.

Certain properties of Phones cannot conveniently be
expressed as binary values. To cope with these situations
each Phone has associated with it a list of ,Scall1rs. which
may be thought of as multivalued Features. The Scalars are.
however. purely descriptive labels. They are not considered
part of the definition of the Phone as such. i.e. two Phones
may share the same combination of Scalar values. whereas
each Phone must have a umque combination of Distinctive
Features. £)urat.1on and .beig-bt are examples of properties
which could be expressed via Scalars. Technically. Scalars
are integer variables capable of assuming the values of all
integer numbers as defined by the implementation of the SPL
compiler.

There are two classes of Scalars within an SPL program. The
first class comprises the two predefined Scalars fll/R and
RAN.k·. OUR specifies the duration of the Phone in time
(expressed in milliseconds). while RANK is a control value
used when the Phones are concatenated in the final output.

The second class comprises· any user defined Scalars. The
user defined Scalars have no direct influence on the physi
cal characteristics of the output from the synthesis pro
gram. They may be used. as previously mentioned. to express
multivalued structural conditions which can only with diffi
culty be expressed in binary distinctive features.

Both types of Scalars may be used in relational and logicai
expressions as part of phonological descriptions and condi
tions.

The actual acoustic phonetic realisation of the Phone is
described in a table of Parameters.

Parameters are the physical control variables of the speech
synthesizer which is eventually to use the output of the SPL
program. The primary property of each Parameter 1s 1 ts

6 HOLTSE & OLSEN

targ-et. The target value is an integer number which indi
cates. for instance. the frequency of a certain formant or
the amplitude of a gate. Each Phone contains one target
value specification for each Parameter associated with the
speech synthesizer in question. Additionally. two transi
tion times are associated with each target value: An inter
nal and an external transition time. The transition times
are dynamic properties of the Phone. They specify the speed
with which the target values should be reached during execu
tion of the synthetic utterance. CHoltse(1974J contains a
more detailed description of the general strategy used dur
ing interpolation of parameters.)

Scalars or Parameters which need to refer to the same
integer value in many places within a program may do so via
a Constc.mt reference. A Constant is an integer with a name
to it.

A Phone may serve only phonological purposes and therefore
have no physical realization of its own. In such Phones the
Scalar and Parameter specifications need not be supplied.
These Phones are known as Pseudo Pllones.

The following is an example of the code needed to define a
vowel named "alpha":

.feature cons. voc. /J.iqll. low. .back. round

p/Jone (alp.ha f ... ',a2tl...l..?OJ_)
f-cons. +voc. +low. -11.iqll. +.bac.k J
Ff 45{7, F2 11 t.1ll. F.] 2&71.J. All .Jtl

The first name in the triangular brackets defines the name
by which the phone will be known in any foliowing rules in
this source module. The character string in the first square
bracket is an alternative name. This string wiil be printed
during debugging instead of the internal name. In this way
it is possible to code the source of the rule program using
an ordinary text editor on any dumb terminal while the final
synthesis program will be able to drive a rather more
sophisticated terminal by taking advantage of. for instance.
a phonetic character generator.

The matrix of binary features is the unique definition of
the phone. And the last line is a description of the parame
ter default target values of the phone.

2.2.2. Structures

The Structure is a special descnptional aid which has been
provided to circumvent the basically segmental nature of
SPL. In principle it is simply a sort of short hand for a
more or less complicated sequence of Phones. Thus. the seg
mental setup of. for instance. a syllabie need only be

SYNTHESIS PROGRAMMING LANGUAGE 7

declared once. From then on the declared name will automat
ically be expanded to the complete segmental syllable
description every time the structure name occurs.

For example the following fragment of SPL code is one way of
handling syllables:

.feature cons. voc

p/JonP (V L -v_/) [-cons. +vocl
p/Jone (C [CJ.) [+cons. -voc.J

structure S (C (tl V) V (C (Ll. 5.)./

The first line declares the two names cons and voc to be of
the type Feature. Then V and Care declared to be the names
of two phones with the feature matrices contained in the
square brackets. And finally 4-~ ... is declared to be a struc
ture consisting of a vowel with from zero to three initial
consonants and from zero to five final consonants. The
expressions within the triangular brackets define the number
of instances of the entity which are acceptable at that
place.

Structure definitions may be used recursively so that the
defintion above could be used in the declaration:

structure Ii (SO) #

to declare that a word. Ii. is any number of syllables ter
minated by a word boundary symbol l which must. of course.
also be defined as a Phone or a Structure). Please note
that in the example above it is not necessary to compute the
exact location of the syllable boundaries since all that 1s
needed for the description to work is the "top" of each
syllable.

2.3. DESCRIPTIONS OF TRANSFORMATIONS

Transformations are described in a context sensitive grammar
and formulated in Rule Statements. Each Rule Statement con
tains a command word. a structural description of the string
to be transformed: the Rule Kernel. a description of the
context(s) in which the Kernel must occur for the Rule to
apply, and a description of the changes to be made.

For example the rule:

c.71c.'mg-e : V / ["C ". + J abJ # -) [+round]

could be one way of formulating that final vowels are
rounded after labial consonants. As the example shows the
Rule Kernel is separated from the Rule Context by a slash

8 HOLTSE & OLSEN

while the place of the Kernel within the Context is indi
cated by an underline. The right arrow points to the
changes to be made.

Space. tab. newline and form feed characters may be inserted
anywhere to improve readability. Thus. the whole rule may
be written on one line or newlines and tabs may be used to
provide special visual effects as rn the example below:

c/Jl1ng-e : /I / #
-)· f -1-roundJ

The rule above will cause the synthesis program to find any
occurrences of v: which presumably is a Pseudo Phone defined
to match any vowel within the language being synthesized.
Once a vowel has been located. the precontext. i.e. the con
text immediately preceding the Kernel. is scanned in reverse
direction. In this example the precontext contains only one
unit: l~ which is probably any consonant within the
language. Furthermore. the restriction 1s added that only
+ l a.b consonants are accepted.

When the precontext has been accepted the post.context is
scanned. The postcontext in this example consists of the
(presumably) Pseudo Phone # - the usual sign for a word
boundary.

If the structural descriptions of both pre- and postcontexts
are matched the phone is changed as described in the last
part of the statement. In this case the feature value
+round is assigned to the vowel matching the Kernel. while
all other feature values for that vowel are left unchanged.
Furthermore. if the Distinctive Feature round is currently
undefined for that vowel 1t will be marked as defined.

The Structures described above may be used to recognize more
complicated conditions. For instance the rule:

c./Jangeall : S / (S <';:'. 2)·) # -) f +stressJ

would. using the definitions from above. add the value
+stress to all segments of the last syllable but three in a
word of three or more syllables.

Modifications of acoustical descriptions may be programmed
as in the following example:

change : f "V". -1-stressJ
/ {S (num_s_vll= 1.l. 8.)) #

-_) f (IJllR = v_min -1-
((fJllR - v_min) / (num_s_yJJ+J))

)J

This fictitous rule will cause the number of following syll
ables in the current word. as previously defined. to be

SYNTHESIS PROGRAMMING LANGUAGE 9

evaluated and placed in the variable 'num_syll'. The dura
tion (DUR) of the stressed vowel Just recognized will be set \
equal to the sum of the minimal vowel duration allowed
(v_min as defined by the user) plus a correction component
depending on the number of succeeding syllables 1n the word.
The correction component is computed as the difference
between the inherent duration of the vowel and the minimal
vowel duration divided by the number of succeeding syllables
as computed above. (num_syll is incremented by one before
the division to avoid dividing by zero 1n words with stress
on the last syllable.J

Consider finally the rule:

change • ["V". -st.resB]
/ ["V". +BtreBB] (C (num_c={l. 7>)

"""'.) [(Fi += tl. J "'FJ t-num_c-1))1

which causes a post tonic unstressed syllable to approximate
the quality of the stressed syllable.

First. an unstressed vowel following a stressed vowel with
from zero to seven intervening consonants is recognized. and
the number of intervening consonants is placed in the vari
able num_ c. Then the frequency of the first formant of the
stressed vowel is obtained lF1(-num_c-l)): One segment
further to the left than the number of consonants found.
This frequency is multiplied by 0.1 and finally added to the
frequency of the first formant of the unstressed vowel.

2.3.1. Rule Types

Various types of rules are recognized in SPL. In the exam
ples above the difference between change and c/Jc.'1TJ9'e<-'tll rules
has been shown: In an ordinary change rule each segment in
the Change Field applies to a corresponding segment in the
Kernel. while in a changeall rule the modifications
described in the Change Field apply to all the segments of
the Kernel - irrespective of the number of segments con
tained within the Kernel.

A third type of rule is the reJ7lacerule which has the form:

rf:?place : x _v z / A B -) w qt

This type of rule will. under the conditions specified.
replace the entire sequence of segments of the Kernel.
irrespective of whether they are described in terms of
Structures or Phones. by the sequence contained 1 n the
Change Field.

Thus. the change rule is used to modify the values of exist
ing Phones in the buffer while the replace rule 1s used when
entire Phones are to be substituted. Also. in a replace rule

10 HOLTSE & OLSEN

the number of Phones may di ff er in the Kernel and Change
Fields so as to allow deletion and addition of Phones from
the buffer.

Special cases of the replace rule are the delete and insert
rules which are of the form:

delete : x _v z / A B -)

and

.insert: / JJ B -) X _Y Z

These two types of rules require special command words as
shown in the examples in order to improve error diagnosis.

2.4. INPUT CONTROL

Since the only unit recognized within an SPL program is the
Phone any ordinary characters input to an SPL coded syn
thesis program must immediately be translated into an
appropriate string of Phones. This translation is con
trolled via g-raph statements. The graph statement is of the
form:

g-rc.,,ph c.7 : li 1

which means that when the compiled program meets the charac
ter a in its input stream it must be translated to the Phone
al which must be a properly defined Phone or Pseudo Phone.

Alternatively. input may be complete matrix and parameter
tables obtained from another SPL program. This facility
allows the different phases of a complete rule system to be
coded in independent programs in order to facilitate debug
ging.

2. 5. OUTPUT CONTROL

Output from an SPL program may be provided in two ways.
Either via a print command or via a speak command. The
print command will cause the current contents of the buffer.
including all feature matrices and parameter tables. to be
output to the designated output.stream. From here it may be
redirected to a terminal or other printing device for
inspection. or it may be used as input for another SPL pro
gram as explained above.

The speak command immediately causes the parameter tables of
the work buffer to be interpolated. Interpolation is per
formed using a strategy very similar to the one described by
Holtse (1974). This data stream is in a format acceptable
for a parametric speech synthesizer.

SYNTHESIS PROGRAMMING LANGUAGE 11

2.5.1. Speech Synthesizers

SPL as such makes few assumpt 1 ons about the type of syn
thesizer for which it 1s producing output and it may in fact
be configured for a wide variaty of synthesizers- - hardware
or software implementations. Furthermore. SPL will recog
nize all the more usual parameter names. at least for syn
thesizers of the formant type. but it will. of course. only
produce code for the synthesizer for whi eh it is actually
targeted. In the current version of SPL a separate compiler
must be produced for each target synthesizer. This may. how
ever. be changed.

2.6. PROGRAM DEBUGGING

SPL includes a trc.'lce facility which. when turned on. will
print the output of any rule which has applied successfully.
With proper use of the alternate phone representations. as
mentioned in the section dealing with Phones. quite a
detailed view of the actions of the synthesis program may be
obtained.

3. IMPLEMENTATION

A first version of an SPL compiler has been developed as a
joint effort between the Institute of Phonetics and the
Telecommunications Research Laboratory. both of Copenhagen.

Currently. most of the defined facilities of the compiler
and its corresponding run time system have been implemented
on the VAX-11/750 computer under a VMS operating system at
the Telecommunications Research Laboratory and on the PDP-
11 /60 computer under a UNIX operating system at the Insti
tute of Phonetics. Our intentions are to keep the two ver
sions as closely compatible as possible.

Also. various support facilities have been developed such as
a special parameter editor whi eh wi 11 allow very detailed
interactive control of the synthesis control parameters.
This is found to be a necessary tool for the development of
proper Phone descriptions. Furthermore. special device
drivers capable of producing phonetic script and detailed
plots of control parameter traces are being developed.

Finally. driver tables for different speech synthesizers are
under construction.

FORMAL DEFINITION

OF SPL

First a note of warning: Readers with a linguistic or
phonetic background should observe that in this report words
like s_vntax or semantics and their derivatives will refer to
the syntax or semantics of the SPL language - not the syntax
or semantics of any natural language.

4. NOTATIONP TERMINOLOGY, AND VOCABULARY

The grammar of SPL is described in an adapted sort of
Backus-Naur form. Thus. non-terminal constructs are denoted
by Eng 1 ish words surrounded by angular brackets: < and > .
Terminal symbols are written in .bold characters.

The production rule for non-terminal symbols consists of the
non-terminal symbol itself followed by the symbol : := (two
colons and an equal sign). After this follows one or more
terminal or non-terminal symbols.

Repetition of constructs is indicated by curly brackets: {
and}. Alternative productions are separated by a vertical
rule: I. Constructs surrounded by square brackets are
optional.

The symbol <empty> denotes a sequence of zero symbols.

Non-terminal symbols may include an underlined part. The
underlined part is an indication of a semantic subcategory -
not part of the context-free syntax description. (For
instance <feature name> means a ,name> of the Type
"Feature".

4 .1. VOCABULARY

SPL programs are represented using the full set of printing
ASCII characters as follows:

<letter.> ::=
AIBICIDiEIFIGIHI I I JI KIL
IM IN I OIPIOIRISITIUIVIWI
XIYIZlalblcldlelflglhl i
I j I k I llmlnlolplqlrlsltl
ulvlwlxlyl z

SYNTHESIS PROGRAMMING LANGUAGE

<dig.it,) ::=

0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9

<special character) : : =

an_y J).rint.ing- t.'1Sci1 clkt:Jrl1cter not ment1 oned
t.'ibove/

13

The following characters and character sequences are
reserved symbols with special meaning to the compiler. They
may not be redefined by the user:

<reserved symbol.)· .• .• =

feature I
constant
changeall
opt I tg
I speak I

phone I integer I scalar I real
I structure I graph I change
I replace I delete I insert I obl I
I ti I tx I trace I on I off I print
file I include I identity I -> I /*

4.2. NAMES AND CONSTANT NUMBERS

Names denote variables. features. scalars. functions. con
stants. output units. identifiers. or parameters. The spe
cial class of Names used to identify Phones and Structures
within rule formulations is known as Unitnames. Their syn
tax is identical to the syntax of ordinary Names. except
that a Unitname may also contain special characters.

Each Name or Uni tname must be unique and the reserved sym
bols previously mentioned may not be used.

(name) ::=
<letter> { <letter> I <digit> }

(unitname.) : :=

an_y sequence or- pr.1 nt.inq c.'isci1 cll'-~acters not
contain.ing tile cllar<-t:tcte.r c: (r left brac.A:et.J.)
(riqllt brc.'ic.A-et.J. [(.... c:quare .brc.t:tc.ket beg-.1n.J.]
(square bracket end J. I (slash). < (angular
brc.t:Jc.ket beq.in.J. or . (comma).

Furthermore. a Unitname may not consist entirely of under
line characters.

14

Examples of Names:

tot_dur
tempo
wb2

Examples of Unitnames:

p_asp
p

!8
t*

HOLTSE & OLSEN

Numbers are decimal numbers. SPL supports integer and real
constant numbers in the usual notation.

(.integ-er:> : : =

<digit> {<digit>}

<integer>.<integer>
I .<integer>
I <integer>.

Examples of Integers:

117
2467

Examples of reals:

0.0
123.
117.99999

Lexical entries are delimited by the first character which
is not a legal part of the entry.

4.3. CONSTANTS

Certain frequently used integers may be declared constant
and referred to by name instead of the usual sequence of
digits.

SYNTHESIS PROGRAMMING LANGUAGE 15

(constant)· : : =

constant <name><integer> { . <.name><inteaer> }

A constant declaration consists of the reserved word con
stant followed by a Name and an Integer.

4.4. SPACES AND COMMENTS

Any number of white spaces. i.e. space. tab. or newline
characters. may be inserted between lexical entries to
improve readability and to separate entries which would oth
erwise flow together and cause syntactic ambiguities.

Comments are surrounded by sequences of I* and *I. Anything
between (and including) these two symbols will be treated as
a sequence of white spaces by the compiler.

5. PROGRAMS

A program consists of three parts: A data declaration part.
an input part (the character conversion>. and the program
body which contains the Rule Statements and Auxiliary Com
mands.

(pro9'a1m.>

<data declaration> <character conversion>
<program body>

(prognw .bod_v > : : =

{ <rule statement> I <auxiliary statement>

A Statement may occupy as many lines as desired. Blanks.
tabs. or newlines may be used as previously explained to
improve readability.

5.1. COMPILER DIRECTIVES

Directives look like ordinary statements. However. they are
commands controllinq the workinqs of the comoiler itself
whereas ordinary commands are commands to be -incorporated
in the program produced by the compiler.

Directives may be placed anywhere within a program.

16 HOLTSE & OLSEN

5.1.1. Include Directive

<include directive)· ::=
include" <filename> ..

The Include Directive causes the compiler to include the
named file of source text as if it had been part of the ori
ginal input file at that point. After having read the
included file. input will again be taken from the original
file.

F.ilenc.'lme may be any character string representing a legal
filename within the operating system on which the compiler
is implemented.

Include Directives may be nested to a reasonable depth.

5.1.2. Identity Directive

The Identity Directive is a sort of mock Data Declaration
(q.v.). but it defines no new data structures.

<identity directive,:> .' :=

identity <identity pair> { , <identity pair>}

<"identity p.&Jir.) : :=

(<name> , <name>) I

(<unitname> r <unitname>)

This directive causes the two names to point to the same
data structure. The first name of a pair must be a previ
ously defined Name or Unitname. The last Name of the pair
will throughout the program be another way of writing the
first Name.

Examples of Identity Directives:

identity (pluk. p)
identity(#. WB). tlabial. lab)

6. DATA DECLARATIONS

Data types within an SPL program must. in princ1pie. all be
explicitly defined via a Data Declaration statement before
they may be referenced 1 n any other statement . However .
certain types are predefined w1th1n the compiler. The
predefined types are not part of the defimtion of the
language as such. but they are implementation dependent

SYNTHESIS PROGRAMMING LANGUAGE 17

srnce they are moz,tly concerned with the interface between
the programming language and a ~.peciflc type of hardware
speech synthesizer.

{ <basic type declaration>}
{ <complex type declaration>

6.1. BASIC TYPES

(h..&/sic t_vpe decl'-1tI'c.'tt.ion)

<basic type identifier> <name> { .• <name>}

(.b..'tsic type ident.iI.ier) : .' =

feature I scalar I real I integer

Examples of Basic Type Declarations:

feature front. back. high. low
scalar height
real tempo
integer contour

6.1.1. Features

Features are binary entities capable of assuming the values
plus or minus to designate the presence or absence of acer
tain property in each Phone. Declaring a new Feature causes
no direct storage allocation but reserve2. space for one
binary Feature in all Phones defined later in the program.

6.1.2. Scalars

Scalars are integer variables associated with the Phones
defined later in the program. Declaring a Scalar name
causes no direct storage allocation. but storage will be
allocated in connection with all Phone declarations.

Two Scalars. RAN.k'and £JllRare predefined within the compiler
and cannot be redefined.

18 HOLTSE & OLSEN

6.1.3. Reals

Reals are variables which may hold any real valued number
within the range defined by the implementation.

6.1.4. Integers

Integers are variables which may hold any whole number
within the range defined by the implementation.

Storage for Reals and Integers is allocated as they are
declared.

Reals and Integers are known collectively as v,'1ric.wles or -
since they are accessible from all parts of a program as -
{Tlo.bals or {Tlo.bc.'11 varia.bles.

6 .1. 5. Parameters

The fifth basic data type is the Parameter. Parameters are
the physical control variables of the target synthesizer.
Since. at least in the current version of SPL. a separate
compiler must be generated for each target synthesizer. the
Parameter Names are predefined in the compiler and cannot be
changed by the user program (although synonyms may be
created through Identity Directives).

However. since it is also desirable to allow the same SPL
source code to be compiled for different target synthesiz
ers. a rather generous supply of Parameter Names are known
beforehand to the SPL compiler - irrespective of the actual
target synthesizer. All such predefined Parameter Names
wi 11 be accepted by any SPL compiler. i.e. no message of
"unknown identifier" etc. wi 11 be produced. However. only
the Parameters that are physically present in the target
synthesizer will be r~flerted in the compiled obJect module.
Non-active Parameters may be redefined so as to produce an
identity between active and non-active Parameters in order
to avoid having the SPL compiler ignore the statement con
taining the non-active Parameter.

The following Parameters are known to all SPL compilers:

FO - Pitch or fundamental frequency of voice source.
F1 - Frequency of first formant.
L1 - Amplitude of first formant.
B1 - Bandwidth of first formant.
F2 - Frequency of second formant.
L2 - Amplitude of second formant.
B2 - Bandwidth of second formant.
F3 - Frequency of third formant.
L3 - Amplitude of third formant.
B3 - Bandwidth of third formant.
F4 - Frequency of fourth formant.

SYNTHESIS PROGRAMMING LANGUAGE

L4 - Amplitude of fourth formant.
B4 - Bandwidth of fourth formant.
C1 - Frequency of first consonant formant.
C2 - Frequency of second consonant formant.
FN - Frequency of nasal formant.
BN - Bandwidth of nasal formant.
FZ - Frequency of spectrai zero.
BZ - Bandwidth of spectral zero.
AO - Overall amplitude.
AV - Amplitude of voicing.
AS - Amplitude of sinusoidal voicinq.
AH - Amplitude of hiss noise.
AF - Amplitude of fricative noise.
AN - Amplitude through nasal branch.
AB - Bypass path amplitude.
VO - Voicing switch.

19

This allowance of Parameter names ought to allow communica
tion with the more usual formant synthesizers.

6.1.6. Characters

The set of all printable ASCII characters may be considered
a sixth Basic Type. The character type cannot be declared.
however. since it is an existing and closed corpus. Fur
thermore, characters may only appear in character conversion
statements within an SPL program. i.e. they are removed as
soon as they are brought into the program.

6.2. COMPLEX TYPES

The complex types are data types made up of combinations of
other types. The two complex types are Phones and Struc-
tures.

<complex t_vpe declarat.1on)

<phone type> I
<structure type>

6.2.1. Phones

A Phone consists of two or three oarts: A name. a matrix of
Distinctive Features and an optional segmental part. A
Phone without segmental description. 1.e. without any direct
acoustic manifestation. 1s known as a Pseudo Phone.

<Phone t_ype) : : =

phone <.p-name><matrix>
[<segmental description>]

20 HOL TSE &. OLSEN

(p-name.) : : =

< <unitname> [<script>]>

(inc..'i tr ix) . •. • =

[["<phone unitname>,"J <feature bundle>]

(feature bundle) ::=

<feature expression>{. <feature expression>}

<:"feature express.ion) ::=

<feature value> <feature name>

(feature value)

+ I - I ?

(segmental description) ::=
<segment field> {. (segment field>}

(·segment .lield) ::=

<scalar field> I
<parameter field>

<scalar name> <integer constant expression>

(parameter field) :_-=

<target definition> [<transition definition>]

(target de.lin.it.ion) ::=

<parameter name> <target value>

(trlms.it.ion definition) : :=
(<internal transition>~<external transition>)

SYNTHESIS PROGRAMMING LANGUAGE

(f c.:~f'9'e t Vc..7 Jue,_,) : : =

✓ 1nteaer constant expression>

(internl'il trc.7llS.l tion) : :=
<inteaer constant expression>

(exte.l77c.Cfl trc.'ms.1 t.1 on) : : =

<inteaer constant expression>

<scr/1Jt)- : : =

str.1 n9" oI dsc.1.1 c:hliI'c.'icters

Examples of Phone Definitions:

phone <alfa[a2J> ["V". +low. -high. +back. -round]
dur 10. rank 50. height 5.
F1 650 (5. 5) .
F2 1200. F3 2800. AO 60

phone <#[#OJ> [-seg. +wb. +sylb]

21

The phone statement defines the properties to be associated
with a given Phone. Each Phone has a Name (of the type
Unitname) and a Script. i.e. phonetic transcription. The
Name of the Phone is used in structural descriptions as an
abbreviation for the complete feature matrix. For instance
p_c.'iSJ.7 could be the Name of a special aspiration after [p].

The Script is a string of characters (including non printing
characters in escape notationJ to be used for de.bugging and
other print out in symboiic form. It has no meaning to the
internal workings of the SPL program but will be printed
exactly as it is entered rn the defrnition. This strategy
allows the synthesis program to take advantage of any spe
cial character srnnerators in prrnters or terminals while
still retaining a measure of readability rn the rule formu
lations.

The Feature Matrix is the combination of feature values
which uniquely identifies that Phone. No two Phones may
have the same combination of feature values.

The phone statement causes the Phone in question. together
with the propertiez, described rn the statement. to .be
entered into the Symbol Table and the Phone Definition
Table.

22 HOLTSE & OLSEN

The data structure defined by of the matrix part of the
Phone definition consists of two parts: A Def imtion Matrix
in which the bit positions of the Features defined for that
Phone are set and a Condition Matrix in which the bit posi
tions of the Features having the value pjus are set while
Features having the value minus have their corresponding
bits cleared.

When the matrix part of a Phone statement conta1 ns the name
of a previously defined Phone the Dehm tion and Condition
Matrices are copied from that Phone and used as the basis
for the new Phone. The special feature vaiue ? has the
effect of removing a Feature from the definition of the
Phone if it is already there. These facilities should save
some typing efforts and errors in the definition part of the
program.

When occurring in structural descriptions the Definition
Matrix is used to mask out the undefined Feature positions
so that only defined Features are matched to the input
string. This strategy means that Features which are unde
fined for a given Phone cannot block the application of a
rule.

The Segment Description defines the ohvsical properties
associated with the Phone. Thus each Parameter entry con
tains a target value and two transition times. The target
is the frequency or amplitude to be reached during the
Phone, while the transition times are the duration of the
transitions external and internal to the duration of the
Phone. (The duration of the Phone is contained in the Scalar
dur.)

Transition times may be left undefined in a parameter field.
In such cases they are by default set to zero.

Targets may be undefined for a given Parameter. In such
cases the target value will be supplled from an internal
default table depending on the target synthesizer.

While feature matrices may be "inherited" from previously
defined Phones. Scalars and Parameter values must be expli
citly declared for each segmental description.

6.2.2. Structures

The Structure concept is a sort of macro definition for com
monly needed sequences of strings of Phones. Thus. Struc
ture definitions may be used to simplify the formulation of
complicated linguistic units such as syllables or words.

SYNTHESIS PROGRAMMING LANGUAGE

(',._c:tructure t_vpe) : : =

structure <structure definition>
{ .• <.structure definition> }

(structure de.fin.it.ion> ::=
<unitname> <structural sequence>

(structural sequence,.> ::=
{ <structural unit> I
(<structural sequence> <range expression>) }

<structural unit) ::=
<ohone un1tname> I
<structure unitname>
<matrix>

Examples of structure Definitions:

structure S CC<0.5>) V (C<0.5>)
structure W tS<ntsyl=l.>) #

23

The Structure definition statement consists of the reserved
word structure followed by the description of one or more
structures. Each description consists of a name and a list
ing of the units which make up the Structure. The elements
of a Structure are Phones. feature matrices or other Struc
tures.

The structure definition statement causes the list of ele
ments for each Structure to be entered into the Structure
Definition Table. In later rule formulations this list of
structural descriptions are invoked every time the name of
the Structure is used. i.e. it is a sort of macro facility
for expressing commonly used complicated conditions. Techn
ically. however. the Structure is expanded at compile time
and therefore may not contain undefined or forward refer
ences.

The .Range Expression is described rn the chapter dealing
with Expressions.

7. CHARACTER CONVERSION

Input to an SPL program is any string of ASCII characters.
Internally in the program all operations are earned out on
Phones - not on characters. The graph conversion rules

24 HOLTSE & OLSEN

define what the SPL program must do with the rnput ASCII
characters when they are encountered in the input stream.

<character conver crion~ : : =

graph <character-phone map>
{ , <character-phone map>

(c/J'-9racter-p/Jone m'-9p) : : = .

<character>: <ohone unitname>

Examples of Character Conversion Statements:

graph a
graph b

al. A: al
b_luk. B: b_luk

Each character-phone map defines a unique conversion from a
given ASCII character to a previously defined Phone. Upper
and lower case characters are different identities. Two
different characters may be mapped to the same Phone. It is
an error to map the same character to two different Phones.

Input characters which are not mapped to Phones are deleted
from the input stream. i.e. they cannot be accessed within
the program.

8. RULE STATEMENTS

Changes to the contents of the Work Buffer are made via Rule
Statements. Each rule statement describes a set of condi
tions under which the Phones currently in the Buffer are
modified. The changes may be deletions or additions of
Phones or they may be modifications to the properties of the
Phones already residing in the Buffer.

,(rule stc.e;tement)• ::=

<rule command> <rule head>
-> <change field>

<context field>

A rule statement consists of a command word rndic~ting the
Rule Type fol lowed by a Rule Head which is terminated by a
colon. Then follows a description of the structural context
to which the Rule applies and a right arrow pointing to the
description of the changes to be made to the Buffer.

SYNTHESIS PROGRAMMING LANGUAGE

8.1. RULE TYPES

There are five types of rules in SPL.

<"rule comm..7nd:> .• .• =

change I changeall I replace I insert I delete

25

Chc.mge Rules are used to modify the current contents of one
or several Phones already residing in the work buffer of the
synthesis program. This type of rule must state explicitly
how many Phones are affected by the modification and how
each Phone affected is to be modified.

Chang-eall Rules are used to apply the same modification to a
whole family of consecutive Phones rn the work buff er.

Replc.&Jce Rules replace one or several Phones in the work
buffer with a sequence of Phone8 obtained from the deflm
tion tables.

Insert Rules are used to enter additional Phones into the
work buffer. The Phones inserted are taken from the defini
tion tables.

Delete Rules are used to remove one or more Phones from the
work buffer.

8.2. THE RULE HEAD

The Rule Head contains two fields. both of which may be
empty: A Label and a Type Declaration.

(rule head.."> : : =

[<rule label>] [<rule type>]

(rule la.be]) ::=
<rule class>.<rule number>

<rule class) ::=
<inteqer constant>

(rule num.ber..'> : :=
<inteqer constant>

26

(rule t_vpe_) ::=
(<type indicator>)

(t_vpe ind.iei.l:f tor)

obl I opt

Examples of Rule Coonands:

change 26. 5 (opt):
changeall 5.2:
insert (obl):
delete :

8.2.1. Rule Label

HOLTSE & OLSEN

The Rule Label is used entirely for debugging purposes dur
ing program development. Thus the class and number digits
are printed out every time the Rule applies successfully to
a form and the Trace function is turned on. The specific
numbers used have no meaning to the SPL program as such and
need not be unique.

8.2.2. Optional and Obligatory Rules

SPL rules are either Optional or Obligatory. If the Type
field is empty the rule is Obligatory.

Generally. the changes described in the Change Field of a
Structural Rule are applied to any form which matches the
structural conditions given in the Context field of the rule
- This is an obligatory rule. If the Context Description of
an Opt.iont.91 rule matches the input string the current state
of the Work Buffer is saved in a special storage area - core
or disk as the implementation prefers. The Optional Rule is
then applied to the Work Buffer in the usual way. and execu
tion continues as usual. When all the rules of the program
have been applied the ~.PL run time system retrei ves the
saved buff er version from its storage and applies all com
mands after the Optional Rule that caused the di version.
Thus two versions of the same input string are created: One
with the effect of the Optional Rule included and another
without.

Since every Optional Rule of a program may in principle
cause a split of the Buff er this faci 11 ty is not aimed at
production versions of talking machines. Primarily. it is a
research tool for trying out new rules. However. the abil
ity to create several versions of the same utterance will

SYNTHESIS PROGRAMMING LANGUAGE 27

also be needed for hypothesi2- building within Automatic
Speech Recognition algorithms.

8.3. CONTEXT DESCRIPTIONS

The structural context to which the Rule appiies consists of
two fields. the Ruie Kernel and the Rule Context.

(context field>::=

<rule kernel> <rule context>

The Kernel describes the structural conditions of the string
that is to be modified. while the Rule Context describes the
conditions that must be met in the surroundings of the Ker
nel for the Rule to apply.

The unit used in the description of structural contexts is
the Context ,Sequence.

<context sequence..)

{ <context unit> I
(<context sequence> <range expression>) }

(context unit_.> : :=

<phone unit.name>
<structure unit.name>
<context matrix>

The Context Sequence consists of a 1 ist of units which may
be either Names of Phones or Structures or Context Matrices.
Structures wi 11 be interpreted as a short hand form of a
string of Phones with or without range indications as
defined in the appropriate structure declaration statement.

(context mc.&/trix..) : :=
[[''<phone unit.name>", J [<feature bundle> J
[(<expression>)]]

The Context Matrix is a matrix describing the conditions
which must be met within a single Phone for the Rule to
apply.

If the Matrix contains the name of a Phone it will be inter
preted as equal to the complete feature specification of
that Phone. Any specific Feature values after the Phone
name will override the Feature values of the definition.
Thus the matrix ["p". +voice] means: All Features defined
for 'p' except that 'p' is voiced here. irrespective of its
original definition.

28 HOLTSE & OLSEN

The special Feature value ? has the effect of removing a
Feature definition temporarily from a Phone. Thus the
matrix [''p". ?voiceJ means: All the Features defined for p
except that p is undefined for voice 1n this context.

The expression field of a context Matrix may be used to test
for specific values of Scalars or Parameters within the
Phone - or in the neighbouring Phones if relative addressing
is employed - or it may be used to test for certain global
conditions.

8.3.1. Rule Kernels

The Rule Kernel describes a sequence of Phones to which the
changes described in the Change Field must be made. Basi
cally. the Rule Kernel is just a Context Sequence:

(rule kernel,) : :=

<context sequence>

This definition holds unconditionally for c/J1.m<;1eall.
replace. and delete rules. Since the number of Phones
affected by a c/J1.ffn<;1e rule must be explicitly stated in the
formulation of the rule. Structuresmd ran9"e express.ions are
illegal in the Kernel of a change rule. i.e. only phone
unitna111es and context matrices are aliowed in the Kernel of
a change rule.

Furthermore. the Kernel of an insert rule must logically be
empty.

8.3.2. Rule Contexts

The Rule Context describes the conditions which must be met
in the environment of the Kernel for the rule to apply.

(rule context> : : =
<empty> I
I <context description>
tion>

<context description) ::=

<empty> I
<context sequence>

<context descrip-

The rule context is signalled by a slash. Then follows the
descriotion of the Phones that must precede a certain Kernel
for the rule conditions to be met.- the Pre-Context. The
place of the Kernel itself within the context is signalled
by one or more underline characters. Then follows the

SYNTHESIS PROGRAMMING LANGUAGE 29

description of the Phones, that must follow the Kernel. the
Post-Context.

If the whole context field is empty. the rule applies uncon
ditionally. 1. e. regardless of the context rn which the
Kernel appears.

Context descriptions are.evaluated from the Kernel and out -
i.e. the Pre-context is evaluated from right to left while
the Post-context is evaluated from left to right.

It should be noted that only Features. Scalars. and Parame
ters actually mentioned in a rule are taken into considera
tion when it is determined whether a given input string
matches a particular rule. In any Matrix Feature.s, which are
not mentioned are marked as "undefined". An already def rned
Feature may be declared as .. undefined" through the / opera
tor.

The following rules describe the conditions under which a
description matches the description of a segment in the
buffer:

(i) If a Feature in the description is marked as plus (+)
or minus (-) the corresponding Feature in the segment
under observation must also have a defined value.

(ii) If a Feature in the description is undefined. either
because it has not been mentioned at all or thrugh an
explicit "undefinition" r /.J the corresponding Feature
in the segment under observation may have any value.

Examples of Context Descriptions:

["C". -voice] l[+cons]<0.2>) V
(C) ["V". +back.+round]
lC <ntcons = 0. 4>) ["V". (dur>10)J
["V". -stress]
(["C°. +dent tdur<20 I! dur>100)] <ntc=0.3>)
["C". -voice] ["C". (dur < durl-1))]

8.4. RULE CHANGE DESCRIPTIONS

The Change Field is the last part of the Rule Statement. It
describes the modifications to be carried out in the work
buffer.

{ <absolute element>}

30

(c.7.bsol ute e 1 ement)· : : =

<phone unit.name> I
<absolute matrix>

<~9.b,._qol ute m'-7 tr .bt)· : : =

HOL TSE t.i OLSEN

[["<phone unit.name>" .J [<feature bundle>]
[(<assignment field>)]]

<~9SS.ifmment .ti'eld) ::=
<assignment statement> {,. ,assignment state
ment>}

The Change Field consists of a list of Absolute Elements.
As were the case with the Kernel field there are certain
semantic restrictions to the Change field.

Thus. in a change rule the number of absolute elements must
agree with the number of Phones in the corresponding Kernel
field so as to state explicitly how each Phone is to be
modified.

In a c/J'-9ngeall rule only one Absolute Element must appear.
since the same modifications will be applied to all the
Phones of the Kernel.

Finally. in a delete rule the whole change field must be
empty.

An Absolute Element may be just the Name of a Phone. or it
may be an expression involving explicit values of Distinc
tive Features with or without a Phone Name. If the special
feature value ? 1s used it w11.l l..'."'-d@f-.ine the feature for
that Phone. The c.'iss.ignment held is used when specific
values are to be assigned to Scalars. Parameters. or to glo
bal variables (integers and reals). The syntax of the
assignments is described in the next chapter.

If the absolute elements of a Change Description is the name
of a Phone. the Feature Matrix of that Phone repiaces the
Matrix of the appropriate Phone in the Work Buffer. If the
absolute element contains an absolute matrix the feature
values of that matrix replace the corresponding feature
values of the appropriate Phone in the work Buffer.

If any of the features concerned are current 1 y undefined in
the Work Phone these features become defined for that Work
Phone.

Features having the value ? in the matrix field of a Change
Description should become undefined in the corresponding
Work Phone if they are already defined.

SYNTHESIS PROGRAMMING LANGUAGE 31

If an absolute matrix contains an assignment field the
receiving locationls) (or lvaluelsJ) refer either to global
variables or to Scalars or Parameters of the appropriate
Work Phone.

Since Scalar and parameter lists are not copied into the
Work Buffer until they are modified. assigning into a Scalar
or Parameter which is current! v not residinq in the Work
Buff er. wi 11 cause the aooroori-ate Phone to be mat:ioed back
onto the definition table- and the corresponding Scalar or
Parameter list to be copied into the Work Buffer before the
assignment actually takes place.

Relative addressing may be used to obtain values of Scalars
or Parameters for comparison or copying between neighbouring
Phones in the Work Buffer. The semantics for evaluating
relative addresses in these (and all otherJ cases is
governed by two general principles:

(i) Relative addresses are evaluated within the entire Con
text Field. i.e. Rule Kernel and Rule Context. before
any modifications are applied to the Work Buffer.

(ii) Relative addresses in change Fields of Insertion Rules
are evaluated when all new Phones have been entered
into the Work Buffer.

Therefore in the following example of an Insertion Rule:

insert 1. J: / V f''C", (dur)dur(+J))J

a vowel (V) will be inserted between two consonants (C) if
the duration of the first consonant is greater than the
last.

Also in the Deletion Rule:

delete 1.2: V / L"C". (du.r•(dur(+J))J # -_)

a word final vowel (V) will be deleted if its duration is
greater than the duration of a preceding consonant (C). i.e.
no attempt wi 11 be made to read the duration of the word
boundary pseudo phone(#).

Finally consider the Insertion Rule:

insert 11.· / V(C) # -) V [''C". rdur=du.rt-1))]

which will insert an extra VC-seauence word finallv lbefore
'#') after a vowel (V) with an ootional consonant followinq.
The duration of the inserted consonant wi 11 be set equal to
the duration of the defined duration of 'V'.

Modifications are carried out from left to right as
described in the Change Field.

32 HOLTSE & OLSEN

Consequently the rule:

c/Jang-e 2.1: V C / -)' L{du.r += it.7.JJ [tdur = du.r(-1.J)J

will cause the duration of L~to be equal to the duration of
V- including the added 10 ms.

Whereas the rule:

c/Jlmg-e 2. 2,: V C / -,) [(du.r=du.r(+J.J)J[(du.r+=Jll)J

will cause Cto be 10 ms longer than V.

8.4.1. Assignment Statements

Assignment Statements move values to specified data loca
tions.

<"~7ssig-nment statement)

<lvalue> <assignment operator> <expression.>

(JVi7Jue_ .. .> : :=

<inteqer name> I
<real name> I
<scalar name> I
<parameter specification>

(parameter spec.i[.iec.::it.ion) : :=
<parameter name> [.<parsub field>]

·(pa.rsub [.ield..'i ::=
<empty> I tg I ti I tx

Lvalues are the receiving locations in assignment expres
sions. They may be global variables or segmental Scalars or
Parameters. It should be noted that a Parameter consists of
three fields. its Target and two transition times. If the
parameter sub-field is left empty the expression is assumed
to refer to the Target field of the Parameter. thus aiiowing
expressions like Fi = 25tJ or Fi. = 251) to mean what they
appear to say.

Assignment statements containing non-active Parameters are
currently ignored.

SYNTHESIS PROGRAMMING LANGUAGE 33

= I += I -= I *= I I= %=

The basic assignment operator is the equal sign. which sim
ply causes the result of the expression following the opera
tor to be left in the receiving location - the lvalue.

The other five assignment operators are ar1t/Jmet.ic assign
ment operators. Thus. the operator +=causes the result of
the expression following the operator to be :.9dded to the
current contents of the 1 value. while the result of the
addition is left in the same location.

The operations performed are: Addition(+=). subtraction<
=). multiplication l*=). division l/=). and the modulus
operation(%=).

Real and integer values may be mixed in assignments. An
assignment always converts to the type of the receiving
location. Reals are converted to integer type by trunca
tion.

Examples of Assignment Statements:

dur =
F1. tg *=
F2 =

9. EXPRESS I ONS

In SPL there are two types of expressions: The ordinary Lo{l
ic<-"il or Arithmetic Exp.ressions and the special class of
Rang-e Expressions. Range Expressions are used within Con
text Sequences to compute the number of elements that
satisfy the conditions described in the Sequence.

When expressions are evaluated over- or underflow is
reported (except division by zero).

9.1. ARITHMETIC AND LOGICAL EXPRESSIONS

Constants. Scalars. Parameters. and qlobal variables mav be
combined with operators in expressions to obtain new ar-ith
metic or logical values.

Arithmetic expressions are used for ordinary computational
purposes. However. the result of any arithmetic expression
may be used as a loo1cal value. Thus. anv non-zero value
has the logical value tLLle, while a zero value is equal to
the logical value faise.

34 HOLTSE & OLSEN

Real and integer values may be mixed rn expressions. In
these cases the contents of integer variables is converted
to real before the result is computed. The result of a com
putation is always converted to the type of the recei vrng
location. Reals are converted to integer type by trunca
tion.

The order of precedence for the different operators 1s
defined by the syntax:

(e.,y_press.ion'> : :=
[<logical sign>J<logical term> I
<expression> <alternative operator> <expres
sion>

(1 ogical term) : : =

<arithmetic expression>
<arithmetic expression> <relational operator>
<arithmetic expression>

(arithmetic e.,y_press.ion.> : :=
[<sign>] <term> I
<arithmetic expression> <additive operator>
<term>

(term.> ::=
<primary expression> I

<term> <multiplicative operator>
<primary expression>

(pr.imar_y e11pression) ::=

<constant name> I
<inteqer name> I
<real name> I
<scalar expression> I
<parameter expression>
(<arithmetic expression>) I

<function call>

aunction Clill) ::=
<function name> (<expression list>)

SYNTHESIS PROGRAMMING LANGUAGE

(express.ion l.1. ... c:t) : : =

<empty> I
<expression> { , <expression>

(sec.'llc.'lr express.ion,.) : : =

<scalar name> [<relative location>]

(parameter express.ion:> : : =

<parameter name> [.<parsub
[<relative location>]

(relat1ve jocc.'1t1on) ::=
(<integer expression>)

35

The Relative Location is used to specify Parameter or Scalar
values from neighbouring Phones in the Work Buffer. Thus.
Fi. t9'(-i) means 'the target value of the first formant in
the Phone immediately preceding this one in the Buffer·.

It is an error to attempt to access Phones outside the Work
Buffer.

9.2. OPERATORS

Operators are divided into four classes according to their
order of precedence.

9.2.1. Multiplicative Operators

The three operators of the multiplicative class perform mui
tiplication. division. and the modulus operation.

(inul t.ipl ica t.i ve operator.)

* I I I %

9.2.2. Additive Operators

Operators of the additive class perform addition and sub
traction. A term may be preceded by a pius or minus to
indicate sign identity or sign inversion.

36 HOLTSE & OLSEN

(sign) • ·-

+ I -

<~7dd.itive operc.7tor.)

+ I -

9.2.3. Relational Operators

Operators of the relational class compare two arithmetic
expressions and return values of true or false.

<relational operator)

== I != I < I <= I > I >=

The comparisons performed are: Equal to. Not Equal to. Less
than. Less than or Equal to_. Greater than. and Greater than
or Equal to.

9.2.4. Alternative Operators

The two operators of this class combine the truth values of
two or more (logical) expressions to produce one logical
result of the operations Logical And. and Logical Or.

<~7ltern<-7tive operr .. ,tor)

&& I II

A logical sign may be prepended a logical term to negate the
truth value of the term:

9.3. FUNCTIONS

A limited set of the more usual mathematical functions are
defined in SPL. Suggested list of basic arithmetic func
tions is: log-0. log-nO. expO. sqrt(). This list may. how
ever. be expanded as the need arises. Also. a special class
of system functions is being considered. Thus. a function
lenghtO returning the number of Phones currently in the
Work Buffer is needed.

Furthermore. a set of special input functions that will
accept input from sense lines and knobs on a control panel

SYNTHESIS PROGRAMMING LANGUAGE :37

are being considered. These could be used to make experi
ments with interactive modifications to parameter values.

9. 4. RANGE EXPRESS I ONS

Ranqe Exoressions are used to evaluate repetitions of con
structs ~ithin structural descriotions.

(rc.·m9"e express.1 on) : : =
<empty> I
< [<lvalue> = J <minmax expression>>

(min111c..:ix e.xpression)· : : =
<empty> I
<min expression>~ <max expression>

<min e.xp.ression) ::=
<empty> I

<integer expression>

(m<-'Vt expressJon...'>

<empty> I

<inteaer expression>

A Range Expression consists of two major fields: An assign
ment and a minimum-maximum expression field. The latter
field defines the minimum and maximum number of repetitions
of the structural entity in question which wi 11 sati~.fy the
structural condition. The minimum and maximum number of
repetitions allowed may not evaluate to a negative value.

The assignment field assigns the number of repetitions actu
ally found in a successful mat.eh to the location described
in the assignment field. If no match 1s found the contents
of the location is unmodified.

If the assignment field is empty it is an indication that
the user program w i 11 not need the output of the count.
Consequently it will not be made available.

If the whole min-max iield is empty. it means that any
number of repetitions will satisfy the conditions.

If the minimum sub-field is empty it means: Zero or more.

If the maximum sub-field is empty it means: Infinitely many.

38 HOL TSE t~ OLSEN

If the entire Range Expression is empty the construct is
interpreted by a special convention to mean: Zero or One
repetition. Thus. allowing the use of parentheses in a
structural description to simply signify an optional string
as in: VtCJ#.

When a Context Sequence involving Range Expressions is
evaluated the program will find the longest match which
satisfies the structural conditions.

Due to the way Context Sequences involving range expressions
are expanded certain structural descriptions may be over
looked. Thus the structural descriptions:

/ X (Y<tl. S)) or / (Y()) X

will not be correctly matched if the structural descriptions
of Y match the descriptions of X: The X-P/Jone will be used
as part of the range of Y before any matching of X can be
done.

This situation is considered a programming error and will
not be caught by the SPL compiler or run time system.

Examples of Range Expressions:

<n = 1. 2>
<0.3>
<.>
< >
<i=>

10. AUXILIARY COMMANDS

The Auxiliary Commands perform various functions extraneous
to the linguistic description which is contained in the Rule
and Data Statements. The functions are mainly debugging and
input/output control.

10 .. 1. TRACE FUNCTION

The Trace Command controls the trace debugging function.

<trace command)· : : =

trace <trace function>

(trace function) : : =

on! off I <empty>

SYNTHESIS PROGRAMMING LANGUAGE 39

When the Trace function is on. the produced program will
print out the contents of the Work Buffer from the start of
the Buffer up to (and including) the current position of the
Rule Kernel every time a Rule has modified the contents of
the Buffer. The Rule Label (if 1t 1s thereJ will be
prepended to the produced output string.

An empty function field or the reserved word on causes the
debugging function to be turned on. It will stay on until
the next off-command - or until the end of the program.

10.2. OUTPUT CONTROL

Three commands are available for controlling the output from
an SPL program. They are File. Print. and ,5pea.k. The File
statement defines the destination of the output produced.
and should properly be considered part of the data dclara
tion. The Print command produces output in symbolic form.
i.e. phonetic notation. And the Speak command produces out
put in a format capable of driving a parametric synthesizer.

10.2.1. Fi le Statement

Since the File declaration interacts heavily with the
operating system of the target computer of the SPL compiler
the syntax described here may be considered a sort of guide
line.

<f-i'J e stc.~ tement)

file <output unit>

<output unit)

<name>

(rJ'J en<.''ime.,.'> .•.• =

an_y legal .ljj ename

"<f ilename>"

The File command causes the named output file to be associ
ated with the output unit mentioned. If the file exists it
will be opened for output. If 1t does not exist it will be
created and prepared for output.

10.2.2. Print Command

The Print command produces output in symbolic form.

40

(pr .int command) . • .• =

print <output unit>

HOL TSE t'-4 OLSEN

The Output Unit must be a filename defined via a File state
ment.

The Print command causes the entire contents of the Work
Buffer to be written to the appropriate output file in Sym
bolic Form.

10.2.3. Speak Command

The Speak command takes one optional argument.

(speak comn1and) : : =

speak [<output unit>]

This command consists of the reserved word spea.k and an
optional output destination. It causes the contents of the
Work Buffer to be interpolated and the result to be output
via the designated output unit. Using the Speak command
without output designation causes output to be sent directly
to the appropriate speech synthesizer. The format of the
output is determined by the implementation.

The Speak command does not terminate the application of
Rules. although the usual procedure will be to have a Speak
command as the last Statement of the SPL program. If the
program contains several Speak commands with one or more
Rules between them_. progressively more refined versions of
the same input sequence will be produced.

In the UNIX implementation output from the Speak command is
usually directed to the Standard Output Device from where 1t
may easily be redirected to a file or piped to a driver pro
gram for a hardware synthesizer.

11. IMPLEMENTATION NOTES

11.1. Mapping the Contents of the Work Buffer

When a rule modifies the feature matrix of a Phone in the
Work Buffer this modification will only affect the copy of
the Phone in the Buffer - not the original definition of the
Phone. which still remains intact in the definition table.
At certain points during execution of the program the
feature matrices will. however. need to be mapped back to
the original definition table.

This happens first of all every time the buffer content2.
must be printed in svmbolic form tthrouqh the trace or print
command)~ In these -cases the definition table is searched

SYNTHESIS PROGRAMMING LANGUAGE 41

for matches with the Phones of the Work huff er. And for
every match found the corresponding Symbolname is printed.
When no match can be found a special default symbol must be
output tor the complete list of feature combinations?).

A more problematic mapping occurs when the Phones or the
Work Buffer are expanded from consisting of only feature
matrices to their full segmental descriptions. 1.e. contain
ing Scalars and Parameters. This mapping should. of course.
be delayed for as long as possible so that changing. for
instance. a vowel from [+back] to (-back] will cause another
table of Parameter values to be used.

The first point when the maooinq becomes necessarv is when a
Scalar or - Parameter value - -in -the Work fmffer r1eed to be
modified. Ultimately. i.e. at interpolation time. all the
Phones must. of course. be mapped.

At the time of mapping the definition table is searched for
matches with the appropriate matrices rn the Work Buff er.
When a match is found the segmental description is copied
into the Work Buffer and Parameter. or whatever 1t was. is
modified. Thus. by the end of the program the Work Buffer
will hold all the modified versions of the Phones while
Phones which were not modified by any rule may be taken
directly from the defin1t1on table.

If no match can be found at the final mapping it is an error
condition of which the user must be duly notified.

It should be noted. however. that once the segmental part of
a Phone has been mapped into the Work Buffer no further
changes in the feature composition of the Phone can affect
the segmental properties of that Phone.

REFERENCES

Basb0ll. H. and Kristensen. K. 1974: "Preliminary work on
computer testing of a generative phonology of Danish''.
Ann. Rep . .Inst. P/Jon. {Im v. t.J:J/J. 8. p. 216-226

Basb0ll. H. and Kristensen. K. 1975: "Further work on com
puter testing of a generative phonology of Danish".
Ann. Rep . .Inst. Pi1on. llniv. Cpi1. 9. p. 265-292

Bobrow. D. G. and Fraser. J. B. 1%8: "A phonological rule
tester". Commumcations or- tile Al-:#. 11. 11. p. 766-772

Carlson. R. and Granstrom. B. 1974: "A phonetically oriented
programming language for rule description of speech''.
Prep.r.mts oI t/Je ... '? .. Cl-J.974. 2. p. 245-25:3

42 HOLTSE & OLSEN

Chomsky. N. and Halle. M. 1%8: The sound pattern oI Enqlis/J
(Harper and Row)

Hertz. S . .R. 1982: "From text to speech with S.RS". JA ... ',""'A 72.
4. p. 1155-1170

Holtse. P. 1974: "Preliminary experiments with synthesis by
rule of standard Danish". .4nn . .Rep. .Inst. Phon. lln.z v.
Cph. 8. p. 239-251

Hol tse. P. 1982: "Speech z.ynthesis at the Institute of
Phonetics". Ann. Rep. .Inst. P.hon. llniv. Cp.h. 16. p.
117-126

Kerkhoff. J. . Wester. .J. and Boves. L. 1 984: "A compiler for
implementing the linguistic phase of a text-to-speech
conversion system". Proc . .Inst. P.hon .. C.-:'c.'it.hol.ic [Im ver
s.it_v, N/imegen. 8, p. 60-69

Molb<Ek Hansen. P. 1982: "The construction of a grapheme-to
phone algorithm for Danish". Ann. Rep. .Inst. Pilon.
[In.iv. Cpb. 16 .. p. 127-136

Molb<Ek Hansen. P. 1983: "An orthography normalizing program
for Danish". Ann. Rep. .Inst. P/Jon. lln.z v. Cph. 17. p.
87-109

