SPL: ASPEECH SYNTHESIS
PROGRAMMING LANGUAGE

Peter Holtse and

Anders Olsen”

This report describes the rirst version orf a hrah
level computer oprogramming (3nquage 7ror exverir-
ments with synthetic soveech.

In SPL & context sensitive parser 15 programmed to
recoanize (inquistrc constructs inan Input
Strinag. Both the structural and phonetic aescrio-
tions of the recognized structures may be modrried
under program control. The Final output of an SFL
proagram 1s &8 Jats stream cspable of ariving g
DErImMELr 1¢c SPech sSvnthesizer.

The notation used 15 based on the orinciroles known
from Chomsky snd Helle's "The Sound Fstrern or
Engl1sh’”. This means that In orincivlie all
linquistic constructs are programmed 1n seamentsl
units. However. 1n SPL certain macro racrlities
have been provided ror more complircated unirts such
as svllsbles or words.

1. INTRODUCTION

A special programming language for experiments with phono-
logical rules 1in general and speech synthesis 1in particular
18 currently being tried out in our laboratory as part ot a
proiject to develop a Danish text-to-speech synthesis svstem
(cf. Holtse(1982)),

¥
=3
o
S
-3
D
—
@
l
¢
3
|
=
oe |
—
¥
oot
(]
o
n
x
(54
@
4
o]
=
0
-5
e
)
R
a
o
Cu
or
2]
/3
£y
2
e}
2]
]
=
=
o
Q
©
o

2 HOLTSE & OLSEN

The first vart of the vresent paper describes 1n broad terms
the philosophy and concepts of the programmina language
while the last part contains the formal syntax definitions.

The i1dea of coding phonological rules directly into a digi-
tal computer 1s not new. of course. In some way or other
special programming tools have been developed 1in most
laboratories working with speech synthesis by ruie. Thus.
various rule testing vprograms have been described. e.q.
Bobrow and Fraser (1968) and Basbell and Kristensen (1974.
1975). Furthermore. several compiling and/or interpreting
systems have been developed. for instance Hertz (1982).
Carlson and Granstrom (1974). and Kerkhoff et al. (1984).
These systems allow rules to be formulated in notations very
like the style commonly used by linquists and phonologists.

While the early rule programs were mainly concerned with
creating an environment for testing vhonological rules. the
later systems have tried to include facilities for direct
manipulation of speech synthesizer control parameters via
rule statements. Thus. the system described by Hertz (19&2)
1s a complete interactive synthesis development system
including a rule interpreter whereas Carlson and Granstrom
describe a compiling language which can produce an entire
text-to-speech conversion system.

The present paper defines a programming languaae (SPL for
Synthegis Programming Language) very much 1like the one
described by Carlson and Granstrom. In fact the whole pro-
ject owes much to their ideas and experience. The language
is. like most languages of this kind. based on the notation
introduced by Chomsky and Halle (1968) in 7he Sound Pattern
of Enalish. The choice of this - maybe outdated - nota-
tional representation 1s not based on a firm conviction of
the superiority of seamental descriptions over other more
gophisticated ways of describing speech. But the seagmental
approach has the merit of beina relatively widely accepted
by linguists and phoneticians as one possible way of
expressing phonological regularities. even if 1t 1is rarely
the most elegant way. Also. since 1t is possible - with a
bit of fiddling - to describe most phonologically relevant
entities in terms of seagments this aporoach i1s quite attrac-
tive as a basis for a general programming language so as to
avoid hardwiring too many definitions into the language.
And finally. the single level description 1s relatively easy
to implement on a digital computer.

1.1. SCOPE OF THE LANGUAGE

SPL is intended as a tool for expressing reqular ohonologi-
cal and phonetic rules. It could be used to write part of a
text-to-speech system. or part of the hypothesis verifica-
tion component(s) of a speech recoanition system., Or 1t
could be wused directly for vhonetic or vhonological
research.

SYNTHESIS PROGRAMMING LANGUAGE 3

Since an SPL proaram will accept normal orthoaraphy as input
and 1s capable of directly driving a parametric speech syn-
thesizer an entire text-to-speech system could. in vprinci-
ple. be coded in SPL. However. certain problems normally
encountered in such systems are better dealt with in special
orthographic preprocessors. Thus. since only reqular
expressions can be formulated in SPL single word exceptions
to general rules or exceptionally weird orthoaraphies are
relatively expensive seing that they may need an entire rule
to handle each word. Also. abbreviations. acronyme etc. can
probably be dealt with more efficiently by ageneral text
preprocessors. although they may. of course. be handled via
rules. Molbzk (1982) contains a detailed discussion of
various strategies for handling these probleme.

Finally. it should be noted that the SPL 1s not well suited
for parsing larger linguistic units - primarily because it
has no facilities for dictionary look up and cannot deal
with even the most rudimentary kind of semantic information.
This deficiency may turn out to cause difficulties with e.q.
sentence stress in certain languages.

2. SURVEY OF THE LANGUAGE

This section gives a brief survey of the structure and con-
cepts used in an SPL proaram. The chapter 1s intended as an
informal description of the language - not a programmer’s or
user’'s manual. The complete formal definition of the SPL
gyntax 1s included as a separate section.

2.1. PROGRAM STRUCTURE

An SPL source program consists of two major components: A
data declaration component and a rule description component.
All data structures needed within an SPL program must be
explicitly defined before they may be used either in rules
or in other data declaration statements. i.e. forward refer-
ences are not allowed. In the rule component the rules are
described which transform an input text string first to a
string of phonetic symbols and then to synthesis control
parameters.

The actual transformation of a text string is effected in
three stages:

During Stage One the 1input characters are translated to
Phones - the internal representation used throughout the
rule program. Then the Phones are loaded into a work buffer
until all the characters of a complete sentence have been
entered,

In Stage Two the rules of the rule component are appiied 1in
succession to the string of Phones in the work buffer. Each
rule 1s applied to all the Phones of the buffer in a left to

4 HOLTSE & OLSEN

right fashion before the next rule comes into play. The
rules may add additional Phones to the buffer or delete
Phones from the buffer. or they may change the descriptions
of the Phones in the buffer. In this way the contents of
the buffer 1s gradually changed into a more and more
detailed description of the utterance originally entered as
text input.

When all the rules have been applied. the buffer should con-
tain the equivalent of the acoustic segments of the utter-
ance. and the program enters Stage Three. During this stage
the segmental chunks now contained 1n the work buffer are
interpolated and reformatted. and a file 1s output which
contains the control code necessary to make the target
speech synthesizer produce the utterance in question.

2.2. DATA TYPES

SPL attempts to impose as few restrictions as possible on
the way a user can describe his linguistic theory. There-
fore, the language containg no built in notions of what. for
instance. a syllable or a word should look like, The only
predefined phonological units within SPL are Dastinctive
Features and Phones. 1.e. the system is basically segmental.
However. quite complicated segemental sequences may be
described via structure tvpes (q.v.) and later referred to
as syllables of various kinds etc. so that. to some extent
at least. the limitations of using a seamental environment
are removed. The important point is that the vroper defini-
tion of such units is left entirely to the user/proarammer.

2.2.1. Features, Scalars, Parameters and Phones

The basic unit within an SPL program 1s the AAone which at
the input end is a segmental entity roughly corresponding to
a letter or a phonetic symbol. During Stage Two. applica-
tion of the rules. this description is aradually refined so
that at the output stage each Phone corresponds to a
separate acoustic seagment. Thus. an aspirated stop will
typically consist of three Phones at the output stage: clo-
sure. explosion. and aspiration.

A Phone consists of a structural part and an optional seg-
mental part. The structural part serves to describe pri-
marily the phonological properties of the Phone. while the
seagmental part contains a description of the physical oro-
perties associated with the realisation of the Phone.

The structural properties of Phones are described in terms
of DQrstinctive Features (or 1just Features), Features are
binary entities which assume values of p/us or minus to
indicate the presence or absence of a certain property
within the Phone. Examples of Features are consonantal.
vocalic. syvllabic. or labra/., For 1instance. the consonants

SYNTHESIS PROGRAMMING LANGUAGE S

b, p. or mmight all be classified as [+labiall to indicate
that they belong to the class of consonants articulated with
lip closure.

Features are combined to form Matrices. e.g. [+voc. -cons.
+syll], Note. however. that while feature matrices 1n seg-
mental phonology are traditionally written in columns. SPL
Matrices are written i1n a linear fashion in reverence to the
limitations imposed by most computer text editors,

Each Phone 1s. 1in principle. defined by a unigue matrix of
Distinctive Features. However. the wvalues of certain
Features may be irrelevant to a particular Phone, For
instance. the wvalue of the Feature "stresg” could in some
cases be considered 1irrelevant to consonants since stress
may in some connections be regarded as a property associated
with vowels. In cases like this the values of the
irrelevant (or redundant) Features may be left undefined.

Certain properties of Phones cannot conveniently be
expressed as binary values. To cope with these situations
each Phone has associated with it a list of Sca/ars. which
may be thouaht of as multivalued Features. The Scalars are.
however. purely descriptive labels, They are not considered
part of the definition of the Phone as such. 1.e. two Phones
may share the same combination of Scalar values. whereas
each Phone must have a unique combination of Distinctive
Features. Jwwation and Aeight are examples of properties
which could be expressed via Scalars. Technically. Scalars
are integer variables capable of assuming the values of all
integer numbers as defined by the implementation of the SPL
compiler,

There are two classes of Scalars within an SPL program. The
first class comprises the two predefined Scalars 27 and
RANA, DUR gpecifies the duration of the Phone 1n time
(expressed in milliseconds). while RANK 1s a control value
uged when the Phones are concatenated in the final output.

The second class comprises any user defined Scalars. The
user defined Scalars have no direct influence on the physi-
cal characteristics of the output from the synthesis pro-
gram. They may be used. as vreviouslvy mentioned. to express
multivalued structural conditions which can only with diffi-
culty be expressed in binary distinctive features.

Both types of Scalars may be used 1in relational and logical
expressions as vart of phonological descriptions and condi-
tions.

The actual acoustic vhonetic realisation of the Phone 1is
described in a table of Aarameters.

Parameters are the physical control variables of the speech
synthesizer which is eventually to use the output of the SPL
program, The vprimary property of each Parameter 1s 1ts

) HOLTSE & OLSEN

target, The target value ig an integer number which indi-
cates. for instance. the frequency of a certain formant or
the amplitude of a gate. Each Phone contains one target
value specification for each Parameter associated with the
speech synthesizer in question. Additionally. two transi-
tion times are associated with each target value: An inter-
nal and an external transition time. The transition times
are dynamic properties of the Phone. They specify the speed
with which the target values should be reached during execu-
tion of the synthetic utterance. (Holtse(1974) contains a
more detailed description of the general strateay used dur-
ing interpolation of parameters.)

Scalars or Parameters which need to refer to the same
integer value in many places within a program may do so via
a cConstant reference., A Congtant is an integer with a name
to it.

A Phone may serve only phonological purposes and therefore
have no physical realization of its own. In such Phones the
Scalar and Parameter specifications need not be supplied.
These Phones are known as Fseudo Fhones.

The following i1s an example of the code needed to define a

vowel named "alpha":

feature cons, voc. hlgh. low. back. round

phone <albha [53207307>
[-cons. +voc. +low. -high. +back. 7
FI 450, F2 1700 F3F Z2800. A0 30

The first name in the triangular brackets defines the name
by which the phone will be known in any following rules in
this source module. The character string in the first square
bracket is an alternative name. This string will be printed
during debugging instead of the internal name. In this way
it is possible to code the source of the rule program using
an ordinary text editor on any dumb terminal while the final
synthesis program will be able to drive a rather more
sophisticated terminal by taking advantage of. for instance.
a phonetic character generator.

The matrix of binary features 1s the unigue definition of
the phone. And the last line 1s a description of the parame-
ter default target values of the phone.

2.2.2. Structures

The Structure is a special descriptional aid which has been
provided to circumvent the basically seamental nature of
SPL. In principle it is simply a sort of short hand for a
more or less complicated seguence of Phones. Thus. the seg-
mental setup of. for instance. a syllable need only be

SYNTHESIS PROGRAMMING LANGUAGE 7

declared once. From then on the declared name will automat-
ically be expanded tco the complete seamental syllable
descraiption every time the structure name occurs.

For example the followinag fragment of SPL code is one way of
handling syllables:

feature cons. voc

pbhone <V (v/> [-cons. +voc]
phone <C [C]> [+cons. -voc]

structure S (C 0.3) V (€ <0 540

The first line declares the two names cons and wvoc to be of
the type Feature. Then Vand ¢ are declared to be the names
of two phones with the feature matrices contained in the
square brackets, And finally 5 is declared to be a struc-
ture consisting of a vowel with from zero to three initial
consonants and from zero to five final consonants. The
expressions within the triangular brackets define the number
of instances of the entity which are acceptable at that
place.

Structure definitions may be used recursively so that the
defintion above could be used in the declaration:

structiure K (5¢>) #

to declare that a word. #. is anv number of svllables ter-
minated by a word boundary symbol (which must. of course.
also be defined as a Phone or a Structure). Please note
that in the example above it is not necessary to compute the
exact location of the svllable boundaries since all that 1s
needed for the description to work is the "top" of each
syllable.

2.3. DESCRIPTIONS OF TRANSFORMATIONS

Transformations are described in a context sensitive grammar
and formulated in Rule Statements. Each Rule Statement con-
tains a command word. a structural description of the string
to be transformed: the Rule Kernel. a description of the
context(s) in which the Kernel must occur for the Rule to
apply. and a description of the changes to be made.

For example the rule:
change 0 V ./ ['C”. +lab] _ F = [tround]
could be one way of formulating that final vowels are

rounded after labial consonants. As the example shows the
Rule Kernel 1s separated from the Rule Context by a slash

8 HOLTSE & OLSEN

while the place of the Kernel within the Context is indi-
cated by an underline. The right arrow points to the

changes to be made.

Space. tab. newline and form feed characters may be inserted
anywhere to improve readability. Thus. the whole rule may
be written on one line or newlines and tabs may be used to
provide special visual effects as in the example below:

change 14 >4 [5cr. +lab] __ F
- [tround]

The rule above will cause the synthesis program to find anv
occurrences of /7. which presumably is a Pseudo Phone defined
to match any vowel within the language beinag synthesized.
Once a vowel has been located. the precontext. 1.e. the con-
text immediately preceding the Kernel. is scanned in reverse
direction. In this example the precontext contains only one
unit: ¢ which 1s probably any consonant within the
lanquage. Furthermore., the restriction 1s added that only
+/ab consonants are accepted.

When the precontext has been accepted the postcontext is
scanned. The postcontext in this example consgists of the
(presumably) Pseudo Phone # - the usual sign for a word
boundary.

I1f the structural descriptions of both pre- and postcontexts
are matched the phone is changed as described in the last
part of the statement. In this case the tfeature value
+round is assigned to the vowel matching the Kernel. while
all other feature values for that vowel are left unchanged.
Furthermore. if the Distinctive Feature rownd is currently
undefined for that vowel 1t will be marked as defined.

The Structures described above may be used to recoanize more
complicated conditions. For instance the rule:

changeall 0 S / (5 <2.2>) ¥ - [+stress]
would. using the definitions from above. add the wvalue

+stress to all segments of the last syllable but three in a
word of three or more syllables.

Modifications of acoustical descriptions may be programmed
as in the following example:

change . [V +stress]
A (S <mum svii= 0,) #

=) [(DUR = v min +
((DUR - v_min) / (num syll+1) 7
P

This fictitous rule will cause the number of following syll-
ables in the current word. as previously defined. to be

SYNTHESIS PROGRAMMING LANGUAGE 9

evaluated and placed in the variable 'num _syll’. The dura-
tion (DUR) of the stressed vowel just recognized will be set -
equal to the sum of the minimal vowel duration allowed
(v_min as defined by the user) plus a correction component
depending on the number of succeeding syllables i1n the word.
The correction component 1is computed as the difference
between the inherent duration of the vowel and the minimal
vowel duration divided by the number of succeeding svllables
as computed above. (num syll 1s incremented by one before
the division to avoid dividing by zero in words with stress
on the last syllable.)

Consider finally the rule:

change . [V" -stress]
/S [V, tstress] (C <num_c=0.7>)

=) [(Fl += 0.1 * Fli-pum c-17)7

which causes a post tonic unstressed syllable to approximate
the quality of the stressed syllable.

First. an unstressed vowel following a stresced vowel with
from zero to seven intervening consonants 18 recognized. and
the number of intervening consonants 1s placed in the vari-
able mum c¢. Then the frequency of the first formant of the
stressed vowel 1s obtained (Fl(-num_c-1)): One seament
further to the left than the number of consonants found.
This frequency 1s multiplied by 0.1 and finally added to the
frequency of the first formant of the unstressed vowel.

2.3.1. Rule Types

Varioug types of rules are recognized in SPL. In the exam-
ples above the difference between change and changesl/ rules
has been shown: In an ordinary change rule each seament 1in
the Change Field applies to a corresponding seament in the
Kernel. while in a changeall rule the modifications
described in the Change Field apply to all the seaments of
the Kernel - irrespective of the number of seaments con-
tained within the Kernel.

A third type of rule is the rewn/ace rule which has the form:
replace ; xyvz - A B - wgtr

This type of rule will. under the conditions specified.
replace the entire sequence of seaments of the Kernel.
irrespective of whether they are described 1in terms of
Structures or Phones. by the sequence contained in the
Change Field.

Thus. the change rule is used to modify the values of exist-
ing Phones in the buffer while the replace rule 1s used when
entire Phones are to be substituted. Also. in a replace rule

10 HOLTSE & OLSEN

the number of Phones may differ in the Kernel and Change
Fields so as to allow deletion and addition of Phones from
the buffer.

Special cases of the replace rule are the de/ete and Insert
rules which are of the form:

delete ; xyvz / A__ B -=>

and

nsert /s A B - x vz

These two types of rules regquire special command words as
shown in the examples in order to improve error diagnosis.

2.4, INPUT CONTROL

Since the only unit recognized within an SPL proaram is the
Phone any ordinary characters input to an SPL coded syn-
thesis vrogram must immediately be translated into an
appropriate string of Phones. This translation is con-
trolled via oraph statements. The araph statement 1s of the
form:

qraph a . al

which means that when the compiled program meets the charac-
ter @ in its input stream it must be translated to the Phone
a7 which must be a properly defined Phone or Pseudo Phone.

Alternatively. input may be complete matrix and parameter
tables obtained from another SPL program. This facility
allows the different phases of a complete rule system to be
coded in independent programg in order to facilitate debug-
ging.

2.5. OUTPUT CONTROL

Output from an SPL program may be provided in two ways.
Either via a munt command or via a speak command. The
print command will cause the current contente of the buffer.
including all feature matrices and parameter tables. to be
output to the designated output stream. From here 1t may be
redirected to a terminal or other printing device for
inspection. or it may be used as input for another SPL pro-
gram as explained above.

The speak command immediately causes the parameter tables of
the work buffer to be interpolated. Interpolation 1is per-
formed using a strateqy very similar to the one described by
Holtse (1974). This data stream 1s 1n a format acceptable
for a parametric speech synthesizer,.

SYNTHESIS PROGRAMMING LANGUAGE 11

2.5.1. Speech Synthesizers

SPL as such makes few assumptions about the type of syn-
thesizer for which it 1s producing output and it may in fact
be confiqured for a wide variaty of synthesizers - hardware
or software implementations, Furthermore. SPL will recog-
nize all the more usual parameter names. at least for syn-
thesizers of the formant type. but it will. of course. only
produce code for the synthesizer for which 1t is actually
targeted. In the current version of SPL a separate compiler
must be produced for each taraet synthesizer. This may. how-
ever, be changed.

2.6. PROGRAM DEBUGGING

SPL includes a #race facility which. when turned on. will
print the output of any rule which has applied successfully.
With proper use of the alternate vhone representationg. as
mentioned in the section dealing with Phones. gquite a
detailed view of the actions of the synthesis program may be
obtained.

3. IMPLEMENTATION

A first version of an SPL compiler has been developed as a
joint effort between the Institute of Phonetics and the
Telecommunications Research Laboratory. both of Copenhagen.

Currently. most of the defined facilities of the compiler
and its corresponding run time system have been implemented
on the VAX-11/750 computer under a VMS operating system at
the Telecommunications Research Laboratory and on the PDP-
11/60 computer under a UNIX operating system at the Insti-
tute of Phonetics. 0Our intentions are to keep the two ver-
sions as closely compatible as possible.

Also. various support facilities have been developed such as
a special parameter editor which will allow very detailed
interactive contreol of the synthesis contrel parameters.
This is found to be a necessary tool for the development of
proper Phone descriptions. Furthermore. special device
drivers capable of producing phonetic script and detailed
plots of control parameter traces are being developed.

Finally. driver tables for different speech synthesizers are
under construction,

FORMAL DEFINITION
OF SPL.

First a note of warning: Readers with a linguistic or
phonetic backaround should observe that in this report words
like syntax or semantics and their derivatives will refer to
the syntax or semantics of the SPL language - nof the syntax
or semantics of any natural language.

4. NOTATION, TERMINOLOGY, AND VOCABULARY

The grammar of SPL is described in an adapted sort of
Backus-Naur form, Thus. non-terminal constructs are denoted
by English words surrounded by angular brackets: < and »>.
Terminal symbols are written in bold characters.

The production rule for non-terminal symbols consists of the
non-terminal symbol itself followed by the symbol ::= (two
colons and an egual sign). After this follows one or more
terminal or non-terminal symbols.

Repetition of constructs is indicated by curly brackets: {
and }. Alternative productions are separated by a vertical
rule: |. Constructs surrounded by sguare brackets are
optional.

The symbol <empty)> denotes a sequence of zero symbols.,

Non-terminal symbols may include an underlined vart. The
underlined part is an indication of a semantic subcategory -
not part of the context-free syntax description. (For
instance <feature name> means a <name> of the Type
"Feature".

4.1. VOCABULARY

SPL programs are represented using the full set of vrinting
ASCII characters as follows:

letter> ;=

AVBIECIDIEBIFIGIHI| IJJ N K-

| M I NJOIPIQIRISITIU|VIW
I ' Zka | bile lod’le | £l g hii
Jj k=15 "t) @0 p Lgdl pRlisal ©
|

X
|
u lwixly!l z

SYNTHESIS PROGRAMMING LANGUAGE 13

cdigrey rr=
ol112)1314151i6171819

<special character) '=

any nrinting ascii character not mentioned
above/

The following characters and character sequences are
reserved symbols with special meaning to the compiler. They
may not be redefined by the user:

creserved symbol> 00=

feature | phone | integer | scalar | real |
constant | structure | graph | change |
changeall | replace | delete | insert | obl |
opt | tg | ti | tx | trace | on | off | print
| speak | file | include | identity | -> | /%

4.2. NAMES AND CONSTANT NUMBERS

Names denote variables. features. scalars. functions. con-
stants. output units. identifiers. or parameters. The spe-
cial class of Names used to identify Phones and Structures
within rule formulations is known as Unitnames., Their syn-
tax is identical to the syntax of ordinary Names. except
that a Unitname may also contain special characters.

Each Name or Unitname must be uniqgue and the reserved sym-
bols previously mentioned may not be used.

sname.) ;0=
<letter> { <letter> | <«digit> | _ }

cunitnames o=

any seguence or mrinting ascll! characters not
containing the characters ((lefrt bracket).)
(right bracket). [(square bracket begin/. 1
(sguare bracket end). [(slash). & (anqular
bracket begini. or , (comma.).

Furthermore. a Unitname may not consist entirely of under-
line characters.

14

Examples of Names:

tot _dur
tempo
wh?2

Examples of Unitnames:

b_asp
D

#

18

ok

Numbers are decimal numbers.

SPL supports

HOLTSE & OLSEN

integer and real

constant numbers in the usual notation.

KInteger> '=
{digiti ad ddigitd> -}

reals 0=

{integer>.<integer>
| .<integer>
| <inteager).

Examples of Integers:

11
2467

Examples of reals:

0.0
123.
117.99999

Lexical entries are delimited by
is not a legal part of the entry.

4.3. CONSTANTS

Certain frequently used integers
and referred to by name instead
digits.

the first character which

may be declared constant
of the usual sequence of

SYNTHESIS PROGRAMMING LANGUAGE 15

sconstant.y f)0=

constant <name><{integer> { , <name><integer, }

A constant declaration consists of the reserved word con-
stant tollowed by a Name and an Integer.

4.4, SPACES AND COMMENTS

Any number of white spaces. 1.e. space. tab. or newline
characters. may be inserted between lexical entries to
improve readability and to separate entries which would oth-
erwise flow together and cause syntactic ambigquities,

Comments are surrounded by sequences of /¥ and *#/, Anything
between (and includinag) these two symbols will be treated as
a sequence of white spaces by the compiler.

5. PROGRAMS

A program consiste of three parts: A data declaration part.
an input part (the character conversion). and the program
body which contains the Rule Statements and Auxiliary Com-
mands.

cprograms 0=

{data declaration) <character conversion>
{program body>

corogram bodvy o=
{ <rule statement> | <auxiliarv statement) }

A Statement may occupy as many lines as desired. Blarks,
tabs. or newlines may be used as previously explained to
improve readability.

5.1. COMPILER DIRECTIVES

Directives look like ordinary statements. However. they are
commands controlling the workings of the compiler iteself
whereas ordinary commands are commands to be 1incorporated

in the program produced by the compiler.

Directives may be placed anywhere within a program,

16 HOLTSE & OLSEN

5.1.1. Include Directive

Cinclude directivey rr=

"

include " <filename>

The Include Directive causes the compiler to 1include the
named file of source text as if it had been part of the ori-
ginal input file at that point. After having read the
included file. input will again be taken from the original
file,

Filename may be any character string representing a legal
filename within the operating system on which the compiler
is implemented.

Include Directives may be nested to a reasonable depth.

5.1.2. Identity Directive

The Identity Directive is a sort of mock Data Declaration
(g.v.). but it defines no new data structures.

KIdentity directive»> 'r=
identity <identity pair> { , <identity pair>}

Identity pairy 0=

(<name> , <name)) |
(<unitname> , <unitname>)

This directive causes the two names to point to the same
data structure. The first name of a pair must be a previ-
ously defined Name or Unitname. The last Name of the pair
will throughout the program be another way of writing the
first Name.

Examples of Identity Directives:

identity (pluk. p)
identity (#. WB). (labial. lab)

6. DATA DECLARATIONS

Data types within an SPL proagram mugt. in principle. all be
explicitly defined via a Data Declaration statement before
they may be referenced i1n any other statement. However.
certain types are predefined within the compiler. The
predefined types are not part of the definition of the
langquage as such. but they are implementation dependent

SYNTHESIS PROGRAMMING LANGUAGE 17

since they are mostly concerned with the intertace between
the programming language and a specific type of hardware
speech synthesizer.

<data declaration> .=

{ <basic type declaration> }
{ <complex type declaration> }

6.1. BASIC TYPES

chasic tvve declaration» .=
<basic type 1dentifier> <name> { . <named>}

chasic tyvpe 1dentitier’)=
feature | scalar | real | integer

Examples of Basic Type Declarations:

feature front. back, high. low
scalar height

real tempo

integer contour

6.1.1. Features

Features are binary entities capable of assuming the values
plus or minus to designate the presence or absence of a cer-
tain property in each Phone. Declaring a new Feature causes
no direct storage allocation but reserves space for one
binary Feature in all Phones defined later in the proaram.

6.1.2. Scalars

Scalars are integer variables associated with the Phones
defined later in the proagram. Declaring a Scalar name
caugses no direct storage allocation. but storage will be
allocated in connection with all FPhone declarations.

Two Scalars. ARANA and 2R are predefined within the compiler
and cannot be redefined.

18 HOLTSE & OLSEN

6.1.3. Reals

Reals are variables which may hold any real valued number
within the range defined by the implementation.

6.1.4. Integers

Integers are variables which may hold any whole number
within the range defined by the implementation.

Storage for Reals and Integers 1s allocated as they are
declared.

Reals and Integers are known collectively as warzables or -
since they are accessible from all parts of a proagram as -
globals or global variables.

6.1.5. Parameters

The fifth basic data type is the Parameter. Parameters are
the physical control variables of the target synthesizer.
Since. at least in the current version of SPL. a separate
compiler must be generated for each target synthesizer. the
Parameter Names are predefined in the compiler and cannot be
changed by the user program (although synonyms may be
created through Identity Directives).

However. since it is also desirable to allow the same SPL
source code to be compiled for different target synthesiz-
ers. a rather generous supply of Parameter Names are known
beforehand to the SPL compiler - irrespective of the actual
target synthesizer., All such predefined Parameter Names
will be accepted by any SPL compiler. i.e. no message of
"unknown identifier" etc. will be produced. However., only
the Parameters that are physically present in the target
synthesizer will be reflerted in the compiled obiect module.
Non-active Parameters may be redefined so as to produce an
identity between active and non-active Parameters in order
to avoid having the SPL compiler ignore the statement con-
taining the non-active Parameter.

The following Parameters are known to all SPL compilers:

FO - Pitch or fundamental freguency of voice source.
F1 - Frequency of first formant.
L1 - Amplitude of first formant.
Bl - Bandwidth of first formant.
F2 - Freguency of second formant.
L2 - Amplitude of second formant.
B2 - Bandwidth of second formant.
F3 - Frequency of third formant.
L3 - Amplitude of third formant.
B3 - Bandwidth of third formant.
F4 - Frequency of fourth formant.

SYNTHESIS PROGRAMMING LANGUAGE 19

L4 - Amplitude of fourth formant.

B4 - Bandwidth of fourth formant.

Ci - Freguency of first consonant formant.
C2 - Freaguency of second congonant formant.
FN - Frequency of nasal formant.

BN - Bandwidth of nasal formant.

FZ - Frequency of spectral zero.

BZ - Bandwidth of spectral zero.

A0 - Overall amplitude.

AV - Amplitude of wvoicing.

AS - Amplitude of sinusoidal voicing.

AH - Amplitude of hiss noise.

AF - Amplitude of fricative noise.

AN - Amplitude through nasal branch.

AB - Bypass path amplitude.

VO - Voicing switch.

This allowance of Parameter names ought to allow communica-
tion with the more usual formant synthesizers,

6.1.6. Characters

The set of all printable ASCII characters may be considered
a sixth Basic Type. The character type cannot be declared.
however. since it 1s an existing and closed corpus. Fur-
thermore, characters may only appear 1n character conversion
statements within an SPL program. 1.e. they are removed as
soon as they are brought into the program.

6.2. COMPLEX TYPES

The complex types are data types made up of combinations of
other types. The two complex types are Ahones and Struc-
tures,

Scomplex type declaration’ c0=

<{phone type> |
<{structure type>

6.2.1. Phones

A Phone consiste of two or three parts: A name. a matrix of
Distinctive Features and an optional segmental part. A
Phone without seamental description. 1.e. without any direct
acoustic manifestation. 1s known as a Fseudo Phone.

Kphone types [)'=

phone <p-name><{matrix)>
[<seamental descriptiond>]

20

HOLTSE & OLSEN

Ko-name.s 0=
< <unitname> [<script> 1>

smatrixy 20=

[["<phone unitname>,”] <feature bundle)> 1]

cfeature bundle> .=
{feature expression> {, <{feature expression>}

Sfeature expression’ .=
{feature value> <feature name)

cteature valuey .=
+ | -1 7?

Csegmental description’ .=
{segment field)> {, <segment field>}

Csegment field> .=

<{scalar field)> |
<{parameter field>

vscalar field> so=
{gcalar name> <{integer constant expression>

cparameter field> o=
<target definition> [<transition definition>]

Ctarget definition® ;=
{parameter name> <{target value>

Ctransition definition> .=
(<internal transition>,6<{external transition)>)

SYNTHESIS PROGRAMMING LANGUAGE 21

ctarget value» ;.=

<integer constant expression>

cinternal transition '=

<integer constant expression>

cexternal transition® !!=
{integer constant expression>

Cscripty co=

String of asci1 characters

Examples of Phone Definitions:

phone <alfalazl> ["V". +low. -high. +back. -round]
dur 10. rank 50. height 5,
F1 650 (5.5).
F2 1200, F3 2800, A0 &0

phone <#[#0]> [-sea. +wb. +sylb]

The phone statement defines the properties to be associated
with a given Phone. Each Phone has a Name (of the type
Unitname) and a Script. 1.e. vphonetic transcription. The
Name of the Phone 1s used in structural descriptions as an
abbreviation for the complete feature matrix. For instance
» asp could be the Name of a special aspiration atfter [pl.

The Script 1s a string of characters (including non printing
characters in escape notation) to be used for debugging and
other print out in symbolic form. It has no meaning to the
internal workinas of the SPL program but will be printed
exactly as 1t is entered in the definition., This strateagy
allows the synthesis program to take advantage of any spe-
cial character generators in printers or terminals while
still retaining a measure of readability in the rule formu-
lations.

The Feature Matrix 1is the combination of feature values
which uniquely 1identifies that Phone. No two Phones may
have the same combination of feature values.

The phone statement causes the Phone 1n question. together
with the oproperties described in the statement. to be
entered into the Symbol Table and the Phone Definition
Table.

22 HOLTSE & OLSEN

The data structure defined by of the matrix part of the
Phone definition consists of two parts: A Definition Matrix
in which the bit positiong of the Features defined for that
Phone are set and a Condition Matrix in which the bit posi-
tions of the Features having the value p/us are set while
Features having the value minus have their corresponding
bits cleared.

When the matrix part of a Phone statement contains the name
of a previously defined Phone the Definition and Condition
Matrices are copied from that Phone and used as the basis
for the new Phone. The special feature value . has the
effect of removing a Feature from the definition of the
Phone if it is already there. These facilities should save
some typing efforts and errors in the definition part of the
program,

When occurring in structural descriptions the Definition
Matrix is used to mask out the undefined Feature positions
so that only defined Features are matched to the input
string. This strategy means that Features which are unde-
fined for a given Phone cannot block the application of a
rule,

The Seagment Description defines the vphysical properties
associated with the Phone. Thus each Parameter entry con-
tains a target value and two transition times. The target
is the frequency or amplitude to be reached during the
Phone, while the transition times are the duration of the
transitions external and internal to the duration of the
Phone. (The duration of the Phone 1s contained in the Scalar
dur,)

Trangition times may be left undefined in a parameter field.
In such cases they are by default set to zero.

Targete may be undefined for a given Parameter. In such
cases the target wvalue will be supplied from an internal
default table depending on the target synthesizer.

While feature matrices may be "inherited” from previously
defined Phones. Scalars and Parameter values must be expli-
citly declared for each segmental description.

6.2.2. Structures

The Structure concept i1s a sort of macro definition for com-
monly needed sequences of strinags of Phones. Thus. Struc-
ture definitions may be used to simplify the formulation of
complicated linguistic units such as syllables or words.

[\
(e}

SYNTHESIS PROGRAMMING LANGUAGE

Cetructure tyvped o=

structure <{structure definition>
{ . <structure definition> }

Setructure definition’ ;.=

<unitname> <structural sequence>

Cstructural seguence. ;=

{ <structural unmt> |
(<structural sequence) <range expression>) }

cstructural unity cr=

<phone unitname)> |
<{structure unitname> |
<matrix>

Examples of Structure Definitions:

structure S (C<0.5>) V (C<0.5>)
structure W (S<{ntsyl=1.>) #

The Structure definition statement consists of the reserved
word structure tollowed by the description of one or more
structures., Each description consists of a name and a list-
ing of the units which make up the Structure. The elements
of a Structure are Phones. feature matrices or other Struc-
tures.

The structure definition statement causes the list of ele-
ments for each Structure to be entered into the Structure
Definition Table. In later rule tormulations thig list of
structural descriptions are invoked every time the name of
the Structure is used. 1.e. 1t 1s a sort of macro facility
for expressing commonly used complicated conditions. Techn-
ically. however. the Structure 18 expanded at compile time
and therefore may not contain undefined or forward refer-
ences.

The Range Expresgion is described in the chapter dealing
with ZAxmressions,

7. CHARACTER CONVERSION

Input to an SPL prooram 1s any string of ASCII characters.

Internally in the program all operations are carried out on
Phones - not on characters, The araph conversion rules

24 HOLTSE & OLSEN

define what the SPL program must do with the input ASCII
characters when they are encountered in the input stream.

Kcharacter conversion® .=

graph <character-phone map>
{ , <character-phone map)> }

Scharacter-nhone maps .=

{character> : <phone unitname)

Examples of Character Conversion Statements:

graph a : al, A : al
graph b : b _luk. B : b _luk

Each character-phone map defines a unigue conversion from a
given ASCII character to a previously defined Phone. Upper
and lower case characters are different identities., Two
different characters may be mapped to the same Phone. It is
an error to map the same character to two different Phones,

Input characters which are not mapped to Phones are deleted
from the input stream. i.e. they cannot be accessed within
the program.

8. RULE STATEMENTS

Changes to the contents of the Work Buffer are made via Rule
Statements., Each rule statement describes a set of condi-
tiong under which the Phones currently in the Buffer are
modified. The changes may be deletions or additions of
Phones or they may be modifications to the properties of the
Phones already residing in the Buffer,

rule statementy .=

<rule command)> <rule head> : <context field>
-> <change field>

A rule statement consists of a command word indicating the
Rule Type followed by a Rule Head which is terminated by a
colon. Then follows a description of the structural context
to which the Rule applies and a right arrow pointing to the
description of the changes to be made to the Buffer,

SYNTHESIS PROGRAMMING LANGUAGE 25

8.1. RULE TYPES
There are five types of rules in SPL.

crule command 0=
change | changeall | replace | insert | delete

Change Rules are used to modify the current contents of one
or several Phones already residing in the work buffer of the
synthesis program. This type of rule must state explicitly
how many Phones are affected by the modification and how
each Phone affected 1is to be modified,

Changeall Rules are used to apply the same modification to a
whole family of consecutive Phones in the work buffer.

Replace Rules replace one or several Phones in the work
buffer with a sequence of Phones obtained from the defini-
tion tables.

Insert Rules are used to enter additional Phones into the
work buffer. The Phones inserted are taken from the defini-
tion tables.

Delete Rules are Used to remove one or more Phones from the
work buffer,
8.2. THE RULE HEAD

The Rule Head contains two fields. both of which may be
empty: A Label and a Type Declaration,

rule head> o=
(<rule label>] [<rule type>]

rule label> =

{rule class>.<rule number)>

crule classy ‘0=
{integer constant>

crule numbers ;=

integer constant>

26 HOLTSE & OLSEN

srule types o=
(<type indicator)>)

Ctype Indicator: .=
obl | opt

Examples of Rule Commands:

change 26.5(opt):
changea Bli5. 22 L. ..00ees
insert (obl):

delete ¢

8.2.1. Rule Label

The Rule Label is used entirely for debugging purposes dur-
ing program development. Thus the class and number digits
are printed out every time the Rule applies successfully to
a form and the Trace function 1s turned on. The specific
numbers used have no meaning to the SPL program as such and
need not be unique.

8.2.2. Optional and Obligatory Rules

SPL rules are either Optional or Obligatory. If the Type
field is empty the rule is Obligatory.

Generally. the changes described in the Change Field of a
Structural Rule are applied to any form which matches the
structural conditions given in the Context field of the rule
- This is an obligatory rule. If the Context Description of
an Optionz/ rule matches the input string the current state
of the Work Buffer is saved in a special storage area - core
or disk as the implementation prefers. The Optional Rule is
then applied to the Work Buffer in the usual way. and execu-
tion continues as usual. When all the rules of the progaram
have been applied the SPL run time system retreives the
saved buffer version from its storage and applies all com-
mands after the Optional Rule that caused the diversion.
Thus two versions of the same 1nput string are created: One
with the effect of the Optional Rule included and another
without.

Since every Optional Rule of a program may 1in principle
cause a split of the Buffer this facility 1s not aimed at
production versions of talking machines. Primarily. 1t is a
research tool for trying out new rules. However. the abil-
ity to create several versiong of the same utterance will

SYNTHESIS PROGRAMMING LANGUAGE 27

also be needed for hypothesis building within Automatic
Speech Recognition algorithms.

8.3. CONTEXT DESCRIPTIONS

The structural context to which the Rule applies consists of
two fields. the Rule Kernel and the Rule Context.

ccontext field» .=
<rule kernel)> <rule context)>

The Kernel describes the structural conditions of the string
that is to be modified. while the Rule Context describes the
conditions that must be met 1n the surroundings of the Ker-
nel for the Rule to apply.

The unit used in the description of structural contexts 1is
the Context Segquence.

ccontext seguence’ ;=

{ <context unit) |
(<context sequence> <{range expression>) }

cecontext unity .=

<phone unitname)> |
{structure unitname)> |
{context matrix>

The Context Sequence consists of a list of unite which may
be either Names of Phones or Structures or Context Matrices.
Structures will be interpreted as a short hand form of a
string of Phones with or without range 1indications as
defined in the appropriate structure declaration statement.

ccontext matrix® .=

[["<phone unitname>",] [(<feature hbundle>]
[(<expression>)]]

The Context Matrix 1s a matrix describing the conditions
which must be met within a single Phone for the Rule to
apply.

If the Matrix contains the name of a Phone 1t will be inter-
rreted as equal to the complete feature specification of
that Phone. Any specific Feature values after the Phone
name will override the Feature values of the definition,
Thus the matrix ["p". +voice] means: All Features defined
for 'p’ except that 'p’ is voiced here. irrespective of its
original definition.

28 HOLTSE & OLSEN

Q)
4

The special Feature value has the effect of removing a
Feature definition temporarily from & Phone. Thus the
matrix /’»" voice] means: All the Features defined for p
except that # is undefined for voice in this context.

The expression field of a context Matrix may be used to test
for specific values of Scalars or Parameters within the
Phone - or in the neighbouring Phones if relative addressing
is employed - or it may be used to test for certain global
conditions.

8.3.1. Rule Kernels

The Rule Kernel describes a sequence of Phones to which the
changes described in the Change Field must be made. Basi-
cally. the Rule Kernel is just a Context Sequence:

crule ternel) 0=

{context sequence>

This definition holds wunconditionally for changeall.
replace. and delete rules, Since the number of Phones
affected by a change rule must be explicitly stated in the
formulation of the rule., Structuresnd range expréessions are
illegal in the Kernel of a change rule. i.e. only phone
unitnames and context matrices are allowed in the Kernel of
a change rule.

Furthermore. the Kernel of an insert rule must logically be
empty.

8.3.2. Rule Contexts

The Rule Context describes the conditionsg which must be met
in the environment of the Kernel for the rule to apply.

srule contexty fr=

<empty> |
/ <context description> <context descrip-
tion>

ccontext descriptions)=

<empty> |
{context sequence>

The rule context 1s signalled by a slash. Then follows the
description of the Phones that must precede a certain Kermel
for the rule conditions to be met. the FAre-context. The
place of the Kernel itself within the context 1s signalled
by one or more underline characters, Then follows the

SYNTHESIS PROGRAMMING LANGUAGE 29

description of the Phones that must follow the Kermel. the
FPost-Context.

I1f the whole context field 1s empty. the rule applies uncon-
ditionally. 1.e. regardless of the context in which the
Kernel appears.

Context descriptions are evaluated from the Kernel and out -
i.e. the Pre-context is evaluated from riaght to left while
the Post-context is evaluated from left to richt.

It should be noted that only Features. Scalars. and Parame-
ters actually mentioned in a rule are taken into considera-
tion when it is determined whether a given input string
matches a particular rule. In any Matrix Features which are
not mentioned are marked as "undefined". An already defined
Feature may be declared as "undefined” through the 7 opera-
tor.

The following rules describe the conditions under which a
description matches the description of a seament in the
buffer:

(1) If a Feature in the description 1s marked as plus (+#/
or minus (¢-./ the corresponding Feature in the seament
under observation must also have a defined value.

(i1) If a Feature in the description 1s undefined. either
because it has not been mentioned at all or thrugh an
explicit "undefinition" ¢.,°/ the corresponding Feature
in the segment under observation mav have any value.

Examples of Context Descriptions:

["C". -voice] ([+congl<0.2>) V

(C) ["V". +back.+round]

(C <ntcong =.0543):6 V", (dur>10)3}

["V". -stress]

(["C". +4dent (dur<20 |! dur>100)] <ntc=0.3>)
["C". -voice]l ["C". (dur < durt-1))]

8.4. RULE CHANGE DESCRIPTIONS

The Change Field is the last part of the Rule Statement., It
describes the modifications to be carried out in the work
buffer.

cchange f1eld> rr=

{ <absolute element) }

30 HOLTSE & OLSEN

cabsolute elementy .=

{phone unitname> |
<absolute matrix)

cabsolute matrixy 0=

[["<phone unitname>" .] [<{feature bundle>]
[(<assignment field>»)]]

cassigmment field> =

<assignment statement> {, <assiagnment state-
ment >}

The Change Field consists of a list of Adésolute Flements.
As were the case with the Kernel field there are certain
semantic restrictiong to the Change field.

Thus. in a change rule the number of absolute elements must
agree with the number of Phones in the corresponding Kernel
field so as to state explicitly how each Phone 1s to be
modified. ~

In a changeall/ rule only one Rbsolute Element must appear.
since the same modifications will be applied to all the
Phones of the Kernel.

Finally. in a del/ete rule the whole change field must be
empty.

An Absolute Element may be just the Name of a Phone. or it
may be an expression involving explicit values of Distinc-
tive Features with or without a Phone Name. If the special
feature value 7 18 used it wiil un—define the feature for
that Phone. The assigmment fi1e/d ig used when specific
values are to be assiagned to Scalars. Parameters., or to glo-
bal variables (integers and reals). The syntax of the
assignments is described in the next chapter.

If the absolute elements of a Change Description is the name
of a Phone, the Feature Matrix of that Phone replaces the
Matrix of the appropriate Phone in the Work Buffer. If the
absolute element contains an absolute matrix the feature
values of that matrix replace the corresponding teature
values of the appropriate Phone in the work Buffer,

If any of the features concerned are currently undefined 1in
the Work Phone these features become defined for that Work

Phone.

Features having the value 7 in the matrix field of a Change
Description should become undefined in the corresponding
Work Phone if they are already defined.

SYNTHESIS PROGRAMMING LANGUAGE 31

If an absolute matrix contains an assignment field the
receiving location(s) (or lvalue(s)) refer either to global
variables or to Scalars or Parameters of the appropriate
Work Phone.

Since Scalar and parameter lists are not copied into the
Work Buffer until they are modified. assigning into a Scalar
or Parameter which 1s currently not residing in the Work
Buffer. will cause the appropriate Phone to be mapped back
onto the definition table and the corresponding Scalar or
Parameter list to be copied into the Work Buffer before the

assignment actually takes place.

Relative addressing may be used to obtain values of Scalars
or Parameters for comparison or copving between neighbouring
Phones in the Work Buffer. The semantics for evaluating
relative addresses 1n these (and all other) cases is
governed by two general principles:

(1) Relative addresses are evaluated within the entire Con-
text Field. i.e. Rule Kernel and Rule Context. before
any modifications are applied to the Work Buffer.

(ii1) Relative addresses in change Fields of Insertion Rules
are evaluated when all new Phones have been entered
into the Work Buffer,

Therefore in the following example of an Insertion Rule:
nsert 1,1 SV [C", (Quripdure+1277 =2V

a vowel (V) will be 1inserted between two consonants (C) if
the duration of the first consonant is greater than the
last.

Also in the Deletion Rule:

delete 1.2; V / ["C". (dur<dur(+1))] __ # ->
a word final vowel (V) will be deleted if 1its duration 1is
agreater than the duration of a preceding consonant (C). i.e.
no attempt will be made to read the duration of the word
boundary pseudo phone (#).
Finally consider the Insertion Rule:

Insert 1.7 / ViC) F =XV IC" (duwr=durc-77

which will insert an extra VC-sequence word finally (before
'#") after a vowel (V) with an optional consonant following.
The duration of the inserted consonant will he set equal to
the duration of the defined duration of V',

Modifications are carried out from left to right as
described in the Change Field.

32 HOLTSE & OLSEN

Consequently the rule:
change 2.1; V C 7 => [(dur += 10)7 [(dur = durc-1)7

will cause the duration of ¢ to be equal to the duration of
V - including the added 10 ms.

Whereas the rule:
change 2.2 V C ./ = [(dur=adurd+]))] (dur+=10)7

will cause Cto be 10 ms longer than 7/,

8.4.1. Assignment Statements

Assignment Statements move values to specified data loca-
tions.

cassignment statement) .=

<(lvalue> <assignment operator) <expression>

Ivalue) cro=

{integer name> |

<real name> |

{gscalar name> |
<{parameter specification>

Kparameter specification’ S=
{parameter name> [.<{parsub field>]

sparsub freld> co=
<empty> | tg | ti | tx

Lvaluss are the receiving locations in assignment expres-
siong., They may be alobal variables or seamental Scalars or
Parameters. It should be noted that a Parameter congists of
three fields. its Target and two transition times. If the
parameter sub-field is left empty the expression iz assumed
to refer to the Target field of the Parameter. thus allowing
expressions like A7 = 250 or F/. = 250U to mean what they
appear to say.

Assignment statements containing non-active Parameters are
currently ignored.

SYNTHESIS PROGRAMMING LANGUAGE 33

cassignment operator o=

= | 4= | —= | *= | /= | %=

The basic assignment operator is the egual sign. which sim-
ply causes the result of the expression following the opera-
tor to be left in the receiving location - the lvalue.

The other five assianment operators are arzthimetic assian-
ment operators. Thus. the operator +=causes the result of
the expression following the operator to be «dded to the
current contents of the lvalue. while the result of the
addition is left in the same location.

The operations performed are: Addition (+=). subtraction (-
=). multiplication (¥=). division (/=). and the modulus
operation (%=),

Real and integer values may be mixed in assignments. An
assignment always converts to the type of the receiving
location. Reals are converted to integer type by trunca-
tion,

Examples of Assignment Statements:

9. EXPRESSIONS

In SPL there are two tvpes of expressions: The ordinary Zog-
1cal or Arithmetic Fxpressions and the special class of
range Fxpressions. Range Expressions are usged within Con-
text Seqguences to compute the number of elements that
satisfy the conditions described in the Sequence.

When expressions are evaluated over- or underflow 1is
reported (except division by zero),

9.1. ARITHMETIC AND LOGICAL EXPRESSIONS

Constants. Scalars. Parameters. and alobal variables may be
combined with operators in expressions to obtain new arith-
metic or logical values.

Arithmetic expressions are used for ordinary computational
purposes. However., the result of any arithmetic expression
may be used as a logical value. Thus. anvy non-zero value
has the logical value ¢rwe. while a zero valus 1s equal to
the logical value false.

34 HOLTSE & OLSEN

Real and integer values may be mixed 1n expressions. In
these cases the contents of integer variables 1s converted
to real before the result is computed. The result of a com-
putation is always converted to the type of the receiving
location. Reals are converted to integer type by trunca-
tion.

The order of precedence for the different operators 1is
defined by the syntax:

Cexpression’ 0=

[<logical siagn>]<logical term> |
<expression> <alternative operator)> <expres-
sion>

<logical term> .=

{arithmetic expression) |
<{arithmetic expression)> <relational operator)
<arithmetic expression>

carithmetic expression® .=

[<sign>] <term)> |
<arithmetic expression> <additive operator)>
<term>

Kterms o=

{primary expression> |
<term> <multiplicative operator>

{primary expression>

Kprimary exprassion’ =

{constant name> |

{integer name)> |

{real name> |

{scalar expression> |
<{parameter expression> |

(<arithmetic expression)>) |
<function call>

Cfunction call> r:=
<{function name> (<expression list)>)

SYNTHESIS PROGRAMMING LANGUAGE 35

cexpression /18t 00=

<empty> |
<expresgion> { , <expression) }

vscalar expressions)=

<(gscalar name> [<relative location>]

parameter expressions [ft=

<parameter name)> [.<parsub
[<relative location)>]

srelative focations 0=
(<integer expression>)

The Relative Location ie used to specify Parameter or Scalar
values from neighbouring Phones in the Work Buffer, Thus.
Fl.tg(-7) means ‘the target value of the first formant in
the Phone immediately preceding this one in the Buffer’.

It is an error to attempt to access Phones outside the Work
Buffer,

9.2. OPERATORS

Operators are divided into four classes according to their
order of precedence.

9.2.1. Multiplicative Operators

The three operators of the multiplicative class perform mul-
tiplication. divieion. and the modulus operation,

smultiplicative operator: .=
* | /| %

9.2.2. Additive Operators

Operators of the additive class pertorm addition and sub-
traction, A term may be preceded by a plus or minus to
indicate sign identity or sian inversion.

36 HOLTSE & OLSEN

Kslgns 0=

+ | -

cadditive operator’ 0=
+ | -

9.2.3. Relational Operators

Operators of the relational class compare two arithmetic
expressions and return values of ¢rwe or rfalse.

relational operator> .=
= | = | |1 <=1>1)>=

The comparisons performed are: Equal to. Not Equal to. Less
than. Less than or Equal to. Greater than. and Greater than
or Equal to.

9.2.4. Alternative Operators

The two operators of this class combine the truth values of
two or more (logical) expressions to produce one logical
result of the operations Logical And. and Logical Or.

calternative operator’ .=
& | |}

A logical sign may be prepended a logical term to negate the
truth value of the term:

Klogical sign> ‘.=
'

9.3. FUNCTIONS

A limited set of the more usual mathematical functions are
defined in SPL. Suggested list of basic arithmetic func-
tions is: Zog(). logn(). exp(). sgrt(/). This list may. how-
ever. be expanded as the need arises. Also. a special class
of system functions is being considered. Thus. a function
lenght () returning the number of Phones currently in the
Work Buffer is needed.

Furthermore. a set of special input functions that will
accept input from sense lines and knobs on a control panel

SYNTHESIS PROGRAMMING LANGUAGE 37

are being considered, These could be used to make experi-
ments with interactive modifications to parameter values.

9.4. RANGE EXPRESSIONS

Range Expressions are used to evaluate repetitions of con-
structs within structural descriptions.

<range exnréessiont f.=

<empty> |
< [<lvalue> =] <minmax expression> >

Sminmayx expression® 0=

<empty> |
<min expression>, <(max expression>

Kmin expréession’ .=

<empty> |
{integer expression>

MAY expréessions .=

<empty> |
{intedger expression>

A Range Expression consists of two major fields: An assian-
ment and a minimum-maximum expression field. The latter
field defines the minimum and maximum number of repetitions
of the structural entity in question which will satisfy the
structural condition. The minimum and maximum number of
repetitions allowed may not evaluate to a negative value.

The assignment field assigns the number of repetitions actu-
ally found in a successful match to the location described
in the assignment field, If no match 1s found the contents
of the location is unmodified.

If the assignment field 1is empty it is an indication that
the user program will not need the output of the count.
Consequently it will not be made available.

If the whole min-max tfield is empty. 1t means that any
number of repetitions will satisfy the conditions.

If the minimum sub-field is empty i1t means: Zero or more.

I1f the maximum sub-field is empty it means: Infinitely many.

38 HOLTSE & OLSEN

If the entire Range Expression is empty the construct 1is
interpreted by a special convention to mean: Zero or One
repetition. Thus. allowing the use of parentheses in a
structural description to simply signify an optional string
as in: V(C)#.

When a Context Sequence involving Range Expressions is
evaluated the program will find the longest match which
satisfies the structural conditions.

Due to the way Context Sequences involving range expressions

are expanded certain structural descriptions may be over-
looked. Thus the structural descriptions:

FEERO S T ar e (RO
will not be correctly matched if the structural descriptions
of Vmatch the descriptions of X The X-Fhone will be used

as part of the range of JV before any matching of ¥ can be
done.

This situation is considered a programming error and will
not be caught by the SPL compiler or run time system.

Examples of Range Expressions:

10. AUXILIARY COMMANDS
The Auxiliary Commands perform various functions extraneous
to the linguistic description which is contained in the kule

and Data Statements. The functions are mainly debugging and
input/output control.

10.1. TRACE FUNCTION

The Trace Command controls the trace debugging function.

Ctrace command> .=
trace <trace function>

(trace function> !'!=
on | off | <empty>

w
(el

SYNTHESIS PROGRAMMING LANGUAGE

When the Trace function 1s o7 the produced program will
print out the contents of the Work Buffer from the start of
the Buffer up to (and including) the current position of the
Rule Kernel every time a Rule has modified the contents of
the Buffer. The FRule Label (1f 1t 18 there) will be
prepended to the produced output string,

An empty function field or the reserved word on causes the
debugging function to be turned on. It will stay on until
the next off-command - or until the end of the proaram.

10.2. OUTPUT CONTROL

Three commands are available for controlling the output from
an SPL program. They are File. Print. and Speak, The File
statement defines the destination of the output produced.
and should properly be considered part of the data dclara-
tion. The Print command produces output in symbolic form.
i.e. phonetic notation. And the Speak command produces out-
put in a format capable of driving a parametric synthesizer.

10.2.1. File Statement

Since the File declaration interacts heavily with the
operating system of the target computer of the SPL compiler
the syntax described here may be considered a sort of quide-

line,

t1le statement> '=
file <output unit> ., "<filename)”

Soutput unit> !r=

<name:>

ctilename.s 0=

any legal ti1lename

The File command causes the named output file to be associ-
ated with the output unit mentioned. 1If the file exists it
will be opened for output. If 1t does not exist it will be
created and prepared for output,

10.2.2. Print Command

The Print command produces output in symbolic form,

40 HOLTSE & OLSEN

SprInt commandy f0=

print <output unit>

The Output Unit must be a filename defined via a File state-
ment .

The Print command causes the entire contents of the Work
Buffer to be written to the appropriate output file in Sym-
bolic Form.

10.2.3. Speak Command
The Speak command takes one optional argument.

Cspeak commandy f.0=
speak [<output unit)]

This command consists of the reserved word spezs and an
optional output destination. It causes the contents of the
Work Buffer to be interpolated and the result to be output
via the designated output unit. Using the Speak command
without output designation causes output to be sent directly
to the appropriate speech synthesizer. The format of the
output is determined by the implementation,

The Speak command does not terminate the application of
Rules. although the usual procedure will be to have a Speak
command as the last Statement of the SPL program., If the
program contains several Speak commands with one or more
Rules between them. progressively more refined versions of
the same input sequence will be produced.

In the UNIX implementation output from the Speak command is
usually directed to the Standard Output Device from where 1t
may easily be redirected to a file or piped to a driver pro-
gram for a hardware synthesizer.

11. IMPLEMENTATION NOTES
11.1. Mapping the Contents of the Work Buffer

When a rule modifies the feature matrix of a Phone 1in the
Work Buffer this modification will only affect the copy of
the Phone in the Buffer - not the original definition of the
Phone. which still remains intact in the definition table.
At certain points during execution of the program the
feature matrices will, however. need to be mapped back to
the original definition table,

This happens first of all every time the buffer contents
must be printed in symbolic form (through the trace or print
command). In these cases the definition table is searched

SYNTHESIS PROGRAMMING LANGUAGE 41

for matches with the Phones of the Work Buffer. And for
every match found the corresponding Symbolname 1s printed.
When no match can be found a special default symbol must be
output (or the complete list of feature combinations?).

A more problematic mapping occurs when the Phones of the
Work Buffer are expanded from congisting of only feature
matrices to their full seamental descriptions. 1.e. contain-
ing Scalars and Parameters. This mapping should. of course.
be delayed for as long as possible so that changing. for
instance. a vowel from [+back] to [-back] will cause another
table of Parameter values to be used.

The first point when the mapping becomes necessary is when a
Scalar or Parameter value in the Work Buffer need to be
modified. Ultimately. i.e. at interpolation time. all the
Phones must. of course. be mapped.

At the time of mapping the definition table ig searched for
matches with the appropriate matrices in the Work Buffer,
When a match is found the segmental description 1s copied
into the Work Buffer and Parameter. or whatever 1t was. is
modified. Thug. by the end of the program the Work Buffer
will hold all the modified versions of the Phones while
Phones which were not modified by any rule may be taken
directly from the definition table,

If no match can be found at the final mapping it is an error
condition of which the user must be duly notified.

It should be noted. however. that once the seamental part of
a Phone has been mapped into the Work Buffer no further
changes in the feature composition of the Phone can affect
the segmental properties of that Phone.

REFERENCES

Basbgll. H. and Kristensen. K. 1974: "Preliminary work on
computer testing of a generative phonology of Danish”,
Ann, Rep, Inst. Fhon. lUniv, ¢oh. 8. p. 216-226

Basbgll., H, and Kristensen. K. 1975: "Further work on com-
puter testing of a generative phonology of Danish”.
Ann., Rep., Inst. Faon. Univ. Cph. 9. p. 265-292

Bobrow. D, G. and Fraser. J. B. 196&: "A phonological rule
tester". Communications of the AcH. 11. 11. v, 766-772

Carlson. R. and Granstrom. B. 1974: "A phonetically oriented
programming language for rule description of speech".
Freprints of the SCL-1/974. 2. p. 245-253

42 HOLTSE & OLSEN

Chomsky. N. and Halle. M. 1968: 7he sound pattern of English
(Harper and Row)

Hertz. S. R. 1982: "From text to speech with SRS". J492 72.
4. p. 1155-1170

Holtse. P. 1974: "Preliminary experiments with synthesis by
rule of standard Danish". A4mn, Rep. 7nst. Fhon, Univ.
Cahs 8 py 289251

Holtse. P. 1982: "Speech synthesis at the Institute of
Phonetics". A4nn., Rep. Inst. Fhon. Univ. Cph. 16. p.
117-126

Kerkhoff. J.. Wester. J. and Boves. L. 1984: "A compiler for
implementing the linguistic phase of a text-to-speech
conversion system". Aroc, Inst. Phon.. Catholic Univer-
sity, Niimegen. 8. p. 60-69

Molbzk Hansen. P, 1982: "The construction of a grapheme-to-
phone algorithm for Danish". Admnn. Fep. Inst. Fhon.
Univ, Coh. 16. p. 127-136

Molb®zk Hansen. P, 1983: "An orthography normalizing program
for Danish". Ann. Rep. Inst. FPhon. Univ, Cph. 17. p.
87-109

