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A SIMPLIFIED EXPLANATION, IN PHYSICAL TERMS, OF THE ACOUSTICAL 

CONSEQUENCES OF TONGUE AND LIP MOVEMENT IN VOWEL PRODUCTION1 

Nina Thorsen 

Abstract: This paper presents an excerpt from a larger exposition, 
attempting to give non-technicians a basic insight in 
the relationship between articulation and acoustics of 
vowels and consonants. 
By means of Newton's second law (force equals the prod­
uct of mass and acceleration) and Boyle-Mariotte's law 
(at constant temperature the product of pressure and 
volume for a given quantity of air is constant) one can 
explain the fact that "When a part of a pipe is con­
stricted its resonance frequency becomes low or high 
according as the constricted part is near the maximum 
point of the volume current ... or of the excess pres­
sure ... " (Chiba & Kajiyama, 1958, p. 151). This is a­
chieved mainly by considering the relative forces that 
act on a thin slice of air, oscillating back and forth 

·through the open end of a quarter-wavelength resonator 
at its first resonance :requency: a decrease of the 
volume of the pipe near its closed end increases the 
forces that keep the slice in motion and thus raises 
its frequency, and vice versa. Inversely, diminishing 
the opening of the resonator decreases the forces that 
keep the slice in motion, and thus lowers its frequ<ncy, 
and vice versa. 

1. Introduction 

This paper does not pretend to be scientific and original in 

the ordinary sense of the words. I just try to explain to pho­

neticians without any special training in physics and mathematics, 

in a simpler fashion than do most of the articles and books on the 

subject, the often cited fact that "When a part of a pipe is con­

stricted its resonance frequency becomes low or high according as 

the constricted part is near the maximum point of the volume cur­

rent ... or of the excess pressure ... " (Chiba & Kajiyama, 1958, 

p. 151). 

1) emes --Translation of a contribution for the 9 Journees d'E~ude 
sur la Parole, Lannion 31 mai - 2 juin 1978. 



2 

2. Initial simplifications 

I 
17.5cm 

Figure 1 

The vocal tract and a simpli­
fied model of the vocal tract. 

() 
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Suppose the vocal tract is a cylindrical pipe, 17.5cm long 

and with a diameter of 2.4cm, closed at one end, open at the oth­

er, see fig. 1. Let us say, further, that the walls of the pipe 

are perfectly hard and non-yielding (i.e. they do not absorb a­

coustic energy) and that there is no radiation of energy from 

the open end of the pipe to the exterior (i.e. there is no dif­

fraction of sound from the lips. This is, of course, a monstrous 

absurdity, and in practice it would mean that we could not hear 

each other speak, but it is a convenient simplification and one 

which is not a serious obstacle to the qualitative considerations 

that follow.) Thus we are dealing with an ideal uniform quarter­

wavelength resonator, with resonances at approximately 500, 1500, 

2500, ... Hz (cf. p. 9). 

3. The vibratory pattern in the uniform quarter-wavelength pipe 

at its first resonance frequency 

As point of departure, let us consider the uniform pipe of 

fig. 1 (i.e. the neutral vowel). Let us look at the column of 

air, after it has been made to oscillate at its first resonance, 

and let us suppose that this oscillation continues with undimin-. 

ished amplitude so long as we are interested in studying it. 

(In practice this is impossible without a constant supply of en­

ergy; this is of no consequence for the present treatment.) 
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The distribution of 
pressure variation (a) 
and volume velocity (b) 
in a uniform quarter­
wavelength pipe at its 
first resonance. 
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We know that at the open end of the pipe (the lips) the va­

riation of volume velocity 1 is maximum, i.e. the air particles 

perform oscillations in and out through the opening with maximum 

elongation. At the closed end (glottis) the pressure variation 2 

is maximum. We also know that there is pressure variation and 

volume velocity, respectively, all along the pipe but that the 

pressure variation decreases from closed to open end (where it is 

zero) and that the velocity decreases from open to closed end 

(where it is zero), see fig. 2. (These facts can also be illuci-

dated in an intuitively comprehensible fashion, but not without 

exceeding the limits of this paper.) 

However, as long as we are dealing with only the first res­

onance, we can conceive of the column of air as if its movement, 

i.e. the volume velocity, were concentrated at the open end and 

as if the pressure variation were concentrated at the closed end 

of the pipe. (Thus we are dealing with a system of concentrated 

constants, with one degree of liberty, i.e. it can oscillate at 

one, and only one, frequency.) In this case the acoustic system 

can be likened to a mechanical system, composed of a mass and a 

sprtng, attached to a hard wall, sliding on a perfectly smooth 

surface, which means that no friction occurs between the surface 

and the mass, when it oscillates, see fig. 3. 

All movement presupposes a fo.rce: if the mass is displaced 

to the left (3b) the compression of the spring exerts a force to 

the right, and when we let go of the mass this force will set the 

1) "variation of volume velocity" is occasionally abbreviated 
"volume velocity", or just "velocity" in the following. 

2) "pressure variation" is occasionnally abbreviated "pressure" 
in the following. 
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a ~ 
b -
C ~ Vibratory pattern of 

a spring and mass, at-

~ 
tached to a hard wall, Figure 3 

d sliding on a smooth 
surface. 

e ~ 
f --

mass in motion, towards its rest position. The mass will pass 

the rest position (3c), because every body that has a mass has 

inertia as well, which means that a movement will continue some 

time after the force which initiated it has ceased to operate. 

Thus, the spring becomes more and more stretched and exerts a 

growing force to the left which will eventually stop the motion 

of the mass (3d) and a movement to the left begins, towards the 

rest position. Because of its inertia, the mass will once more 

pass its position of equilibrium (3e), the spring is compressed 

anew and exerts a growing force to the right until the mass is 

stopped (3f) and a movement to the right commences, and so on and 

so forth. If no energy is lost anywhere, the mass will oscillate 

eternally with undiminished elongation. Its frequency depends on 

the tension of the spring and the size of the mass: the greater 

the tension, and the smaller the mass, the higher its frequency 

of oscillation, and vice versa. The elongation of the mass de­

pends only on the initial displacement which sets the system in 

motion. 

In the same fashion we can consider the behaviour of a thin 

slice of air, S, at the open end of the pipe, see fig. 4 (the 

movements and thickness of this slice are greatly exaggerated in 

the figures). What keeps this slice of air in motion is the com­

bined action of (1) the pressure variations that arise in the 



Figure 4 

5 

Vibratory pattern of 
a thin slice of air at 
the open end of the uni­
form quarter-wavelength 
pipe. 
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pipe due to the motion of Sand (2) S's inertia. When S commenc­

es a movement to the right (4a) it is because the pressure in the 

pipe is greater than the atmospheric pressure outside the pipe, 

and when S passes its rest position (4b) it is because S has a 

certain (however small) mass and therefore inertia. Thereby the 

pressure within the pipe decreases, and the atmospheric pressure 

constitutes a (relative to the pressure in the pipe) growing 

force to the left, which eventually stops Sand sets it in motion 

back towards the position of equilibrium (4c). This oscillation, 

too, will continue eternally, with undiminished amplitude, if no 

energy is lost anywhere from the system. 

There is a close tie between the forces that act on S, 

S's mass, and S's motion, which is given by Newton's second law: 

[ 1.1] F = m•G (force equals the product of mass 
and acceleration) 

a) the force, in our case, is the product of pressure and the 

area of the surface to which the pressure applies: 

[ 1. 2 J F = P•A 

This area is constant (see fig. 4). Only the pressure in the 

pipe varies. 

b) Sis simultaneously influenced by two antagonistic forces, 

one due to the pressure in the pipe and one due to the atmos­

pheric pressure outside. The resultant force is due to the 

difference between these two pressures. 
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c) S's mass is constant. 

Thus, one can paraphrase Newton's second law: 

[ 1. 3 J 

[ 1. 4 J 

[1.5] 

i.e. 

( (Po+ tP) - Po ) • A = m • G 

tP = k•G 

thus or 

where Po is atmospheric pressure, 6P is the pressure increment 

(or decrement) in the pipe, k is a constant, equal to the mass of 

S divided by S's surface area, and G is S's acceleration, which 

can be taken as an indication of S's mean velocity. Thus S's ve­

locity varies according to the difference in pressure within and 

outside the pipe. This difference is positive and negative, in­

termittently, and S thus moves from left to right and back again 

through the opening of the pipe. 

4. Non-uniform pipes with constant opening 

It can be shown that 

a) S's elongation depends only on the magnitude of the initial 

force. 

b) S's elongation and frequency are independent of each other. 

c) S's frequency depends only on the relative changes of pres­

sure that are induced in the pipe due to S's motion, which, 

in their turn, are determined by the total volume of the uni­

form pipe. 

All this is a consequence of Newton's second law and of another 

law which states that, at constant temperature, the product of 

pressure and volume for a given quantity of air is constant 

(Boyle-Mariotte's law): 

[ 2 .1] P•V = k 

In our case it means that when the volume of the column of 

air is increased by S's movement out of the pipe, the pressure in 

the pipe decreases, and vice versa. The most important fact to 

note is that as long as the volume increments and decrements are 

small compared to the total volume of the pipe, the pressure and 

volume variations are proportional to one another: 
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Let Po and Vo be pressure and volume, respectively, in the rest 

condition: 

[ 2. 2] 

We decrease the volume by tv and get a pressure increase of 6P1: 

[ 2. 3] 

[ 2. 4] 

(Po+ 6P 1 ) (Vo -6 V) = k i.e. 

We decrease the volume by 26V and get a pressure increase of ~P2: 

[ 2. 5] 

[ 2. 6] 

thus [2.7] 

6P2(Vo-26V) = k - Po (Vo-2LiV) = Po•Vo - Po(Vo-26V) = 
2•Po•bV 

tP 2 = 2•Po •6V _ 2•LiP1 (Vo-LiV) ~ 2 . 6p 1 if /N<<<Vo 
(Vo-26V) - (Vo-2~V) 

It follows that if a volume decrement of tVcm 3 causes a 

pressure increment of 6Pµbar, a volume decrement of 2bVcm 3 will 

render a pressure increment of 2bPµbar. (In practice the volume 

changes are very small indeed, since the elongation of the air 

particles is of an order of magnitude of a few millionths of a 

millimeter.) 

Re ( a) and ( b) ( p . 6 ) 

Let us say that the initial force which sets S going is a 

displacement to the left by Xcm (see fig. Sa). This produces a 

pressure of (Po+LiP)bar in the pipe. When we let go of Sit 

starts moving to the right, and we know of its acceleration (and 

thus its mean velocity) that it is porportional to the difference 

between the pressures within and outside of the pipe. 

[ 3 .1] i.e. 

If, instead, we commence by giving Sa displacement of 2Xcm to 

the left ( see fig. Sb) , the p .. essure within the pipe will be 

(Po+2tP)bar. We get an acceleration as follows: 
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[ 3. 2] 

thus [3.3] 
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The relationship between 
initial elongation of S 
and pressure increment in 
the lud form pipe. 

- Po 2liP 
= Jc 

Figure 5 

The mean velocity of Sin the second case is twice that of Sin 

the first case, but the elongation is also twice that of the 

first case, and thus the frequency of oscillation is identical in 

the two cases, and is independent of the elongation. 

V 

a 

b 

Re (b) and (c) 

Xcm 

I I 

' 'S I • 1 I I 
The relationship between 
pressure increment and 
elongation of Sin two 
uniform ~ipes with vol­
umes Vern (a) and ½Vcm3 

( b) . 

Figure 6 

If one displaces S 1 and S2 of fig. 6 by Xcm to the left, 

in pipes having volumes of Vcm 3 and \Vcm 3
, the relative volume 

decrement in the lower pipe is twice that of the upper pipe, and 

th~s the pressure increment in the lower pipe is twice that of the 

upper pipe. The force which acts on S2 is thus twice as large as 

the one that acts on S 1. The mean velocity of S2 is therefore 

twice that of S1, and since their elongations are identical, the 

frequency of oscillation of S2 must be twice as high as that of 

S1. (This is in complete accord with what we obtain from the 

formula for resonance frequencies in uniform quarter-wavelength 
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pipes: 

where c is the speed of sound in air, Lis the length of the 

pipe, n is the number of the resonance. If c=35000cm/sec, 

L 1 =17.5cm (a), and L2=8.75cm (b) we get: 

35000 (a): f 1 = 70 = 500Hz (b): f 1 = 35 000 = l000Hz ) 
35 

The model of oscillation described above is extremely sim­

plified, because velocity and pressure are not concentrated at 

the open and closed ends, respectively, of the pipe, see fig. 2. 

In practice this means that a volume change will have the great­

est influence on the first resonance if it is located near the 

closed end of the pipe, where pressure variation is at its maxi­

mum. 

Figure 7 
Models of two vowels 
[ a. ] and [ i ] • 

[aJ 1.---C -----~ 

[i] c _____ :=::::---= 

We may conclude that the frequency of the first resonance of 

the pipe in fig. 7 above, which is a model of the vowel [a.], must 

be higher than that of the uniform pipe ([a]) and that, inversely, 

the first resonance of the pipe in fig. 7 below, which is a model 

of the vowel [ i ], is lower than that of [a], which is confirmed 

be empirical facts. (See also the summary.) 

If we wish to consider the effect of volume changes upon the 

second, third, etc., resonances, we can no longer compare the 

system with a single slice of air (one mass) and one volume with 

pressure variation (one spring). The pressure distribution along 

the pipe at its second resonance frequency is depicted in fig. 8. 

If the column of air oscillates only at its second resonance the 

system behaves exactly as if it were combined of three pipes, 

each 1/3 Lem long. The two imaginary pipes to the left in fig. 
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The pressure distri­
bution in a uniform 
pipe at its second 
resonance frequency. 

Figure 8 

Sb are joined with the open ends against each other, and the pipe 

to the right is joined, closed ends together, to the one in the 

middle. Now we can reason about the system in the same way as 

for the first resonance, only there are two places where a change 

of volume will have an appreciable effect on the (second) reso­

nance, namely at the closed end and at a distance of 2/3 Lem from 

the closed end. At the third resonance there will be three plac­

es, at the fourth four places, etc., where volume changes will 

affect the resonance frequency appreciably. Each resonance has 

a pressure maximum at the closed end of the pipe, and thus all 

resonance frequencies rise or lower as a consequence of a decrease 

or increase of the volume near the closed end (but not always to 

the same degree, see the summary). 

5. Uniform pipes with varying degrees of opening 

R1 

a 

R2 

b 

Pc,+t.P 

Pc,+t.P 

Xcm 
~ 

The relationship between 
the elongation of two 
slices of air with areas 
of Acm2 (a) and \Acm 2 (b) 
and pressure increment in 
the uniform pipe. 

Figure 9 

Let us now consider what happens if we decrease or increase 

the volume at the open end of the pipe. The volume change in it­

self is of no consequence, since there is no pressure variation 
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at the open end of the pipe, but the vertical closening or open­

ing of the pipe is essential, and it is that only which is de­

picted in fig. 9. We compare two pipes of identical diameters 

and lengths. The upper pipe, R1, is fully open, i.e. the area of 

opening is Acm2 . The lower pipe, R2, has a circular opening of 

~Acm2 . The two slices, S1 and S2, are equally thick, Bern. We 

employ the laws of Newton and of Boyle-Mariette: F = m·G and 

P•V = k. 

The masses of S 1 and S2 are known if we know the volume of 

the slices and the density of the.air, p: 

[4.1] [ 4. 2] 

For a given pressure increment, 6P, in R1 and R2, we get forces, 

F1 and F2, that act on S1 and S2 as follows: 

[5.1] F 1 = 6P • A [ 5. 2] 

But force also equals the product of mass and acceleration, thus: 

[ 6. 1] /::,.P•A m1 • G 1 i.e. G1 
6P•A 6P•A 6P 

F1 = = = = = 
mi A•B•p B•p 

[ 6. 2] F2 l::,.p•~A m2•G2 i.e. G2 
1::,.p. \A /::,.P•\A 1::,.p 

= = = = ½A•B•p = B•p m 2 

thus [ 6. 3] G1 = G2 

The two slices of air will have the same acceleration (mean ve­

locity). BUT they do not have the same elongation. In order to 

induce in R1 and R2 the same volume decrement, and thus the 

same pressure increment, S 2 will have to be displaced twice as 

far into the pipe as S1, because the surface area and volume of 

S2 are only half those of S1. If the two slices have the same 

mean velocity, but the distance covered by S2 is twice that cov­

ered by S1, S2's period will be twice that of S1, and consequent­

ly the frequency of oscillation of S2 will be half that of S1. 

If, instead, we commence by giving S1 and S2 the same dis­

placement, as in fig. 10, we know that the volume decrement in 

R1 is twice that of R2. The pressure increment in R1 is thus 

twice that of R2, e.g. 26P as against 6P. These values are sub-
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The relationship between 
initial elongation of S1 
and S2 and pressure in- Figure lO 
crement in the uniform 
pipe . 

stituted in the expression for acceleration: 

[ 7 .1] 

i.e. [7.3] 

[ 7. 2] 

The mean velocity of S 1 will be twice as large as that of S 2 , and 

since the elongations are identical, the frequency of oscillation 

of S1 will be twice as high as that of S2. 

Since the volume velocity is not concentrated at the open 

end, but is distributed all along the pipe (see fig. 2) we may 

conclude that an occlusion will have a greater effect on the 

first resonance frequency near the open end of the pipe, where 

velocity is at its maximum. 

,t. v~locitt 
I 

1, 
11 
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cm 

The velocity distribu-
tion in a uniform ptpe Figure 11 
at its second resonance. 

If we consider the second, third, etc., resonances we must 

again look at the velocity distribution all along the pipe. At 

the second resonance (see fig. 11) there are two places where the 

variation of volume velocity is maximum, namely 1/3 Lem from the 

closed end, and at the open end. At the third resonance there 

will be three places, at the fourth four places, etc., where an 

occlusion will have an appreciable effect on the resonance. Each 

resonance has a velocity maximum at the open end and thus all 

resonances are lowered by an occlusion at the open end (but not 
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always to the same degree, se the summary below). 

6. Summary 

A volume increase in the pipe produces a lowering of a reso­

nance (and vice versa), the more so the nearer it is located to a 

pressure maximum for that resonance, and an occlusion produces a 

lowering of a resonance (and vice versa), the more so the nearer 

it is located to a velocity maximum for that resonance, and, all 

things being equal, the greater the change in volume or opening/ 

closing, the greater the change in frequency. However, in prac­

tice we cannot separate these two types of changes within the vo­

cal tract. Because of the limitations imposed by the articulato­

ry organs, variations in the cross-sectional area within the vocal 

tract are simultaneously volume changes and occlusions/openings. 

Therefore the general formulation "When a part of a pipe is con­

stricted its resonance frequency becomes low or high according as 

the constricted part is near the maximum point of the volume cur­

rent or of the excess pressure." 

It follows that if the constriction or expansion is situated 

exactly between a pressure and a velocity maximum, it will have 

no effect. Further: the vocal tract is an integrated system 

whose configuration is determined by the position of the tongue 

and lips. The tongue cannot simultaneously perform an extended 

constriction in the pharynx and at the hard palate, on the con­

trary, a pharyngeal constriction produces a relative expansion 

n~ar the hard palate, and vice versa, see fig. 7. The cumulative 

effect is a "double" raising ([a.]) or lowering ([ i ]) of the first 

resonance frequency. 

We have considered the acoustic consequences of changes in 

the cross-section of the vocal tract for each resonance separate­

ly. In practice a vowel is, of course, always composed of sever­

al resonances, that conjointly form one complex oscillation. 

This is of no consequence for our considerations one can 

treat this complex oscillation as a superposition of sinusoidal 

oscillations and consider the effect of a change in the vocal 

tract for each component separately. 

What is more important is the fact that as soon as one does 

not as point of departure take the uniform pipe, but a pipe al-
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ready deformed (like the one in fig. 7 below, [ i ]) one cannot 

quantify the changes in frequency in as simple a fashion as for 

the uniform pipe. This is due to the fact that the distribution 

of pressure and velocity is no longer sinusoidal (as it is in 

figs. 2, 8, 11). One example will suffice: for the model of 

[ i] the velocity at the second resonance is very nearly zero in 

the front third of the pipe near the opening, and an occlusion 

at the opening (rounding of the lips) will thus have very little 

effect on the second resonance. But since the velocity at the 

third resonance is maximum (greater, in fact, than for the uni­

form pipe) it will decrease radically due to an occlusion 

(rounding) at the opening. (For diagrams of the distribution of 

·pressure and velocity for several vowels and resonance frequen­

cies, see the works cited in the references.) This is why one 

can say, not wholly unjustified, that certain resonances are, in 

certain cases, more dependent on changes in one part of the vocal 

tract than in another, and this is true especially of the narrow 

vowels. 

7. Conclusion 

In real life, i.e. speech, the situation is far more compli­

cated than this demonstration would lead one to believe. The 

walls of the vocal tract are not hard, and there is a consider­

able radiation of energy to the exteriour. Apart from the loss 

of energy, this radiation causes a tuning of the resonances, 

which is not of the same magnitude for high and low frequencies, 

and it is, further, heavily dependent on the degree of opening at 

the lips. The voice source, i.e. the pulse train from the glot­

tis, constitutes another complicating element, among other things 

by the coupling it allows between the sub- and supraglottal cavi­

ties. Apart from all that, the mathematics and physics employed 

above do not suffice: in order to quantify the consequences of 

tongue and lip movement, one must. solve higher order differen­

tial equations. 
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