
216

-PRELIMINARY WORK ON COMPUTER TESTING OF A GENERATIVE PHONOLOGY

OF DANISH

Hans Basb~ll and Kjeld Kristensen 1

1. Introduction

The purpose of the project to be reported here is to test

a part of a generative phonology of Danish (which had been

worked out by one of the authors (HB) before this project

started). An abstract ·phonological representation (i.e. a

systematic phonemic representation) of a given word is used as

input, and the program together with different sets of "back

ground data" (see below) changes this input form to one or

several phonetic representations. These phonetic representa

tions can then be compared to actual pronunciations of the

.input word. If there is no agreement between the computed

phonetic representation and the corresponding actual pronuncia

tion, then there must be some error, either in the input form

or in the background data (or in the program, of course).

This error should then be found and corrected. Thus the ultimate

purpose of this project is to improve the part of a Danish

phonology being testeq. It is evident that this method only

allows finding lack of observational adequacy, i.e., it can be

used neither as a proof of observational adequacy, .nor for

finding lack of descriptive adequacy (in the Chomskyan sense).

The project was initiated at the third Scandinavian

surpmer school for _research workers in the fi:ld of computional

linguistics, held in Copenhagen from July 29th to August 10th,

.1) Kjeld Kristensen is an engineer and cand.phil. (in Danish).
He is a teaching assistant at the university of Copenhagen.

217

1974. 1 The program has only been tested with a very small

sample of (quite ar~itraryl data, but its general structure

may nevertheless be briefly reported here. A more detailed

account is planned for the forthcoming volume of ARIPUC.

2. Strategy

The program together with the three sets of background

data· (see section 2 .1 below). is called the "grammar". The

grammar may be considered to consist of a linearly ordered set

of phonological rules together with the principles governing

their application (see section 2.3 below). The input form of

a given word is first submitted to rule no. 1 and is possibly

changed by this rule. The output form from rule no.l is the

input form to rule no. 2, etc. The output form from the last

rule is the output of the grammar (s·ee section 2. 5) o

2.1 General organization of program and data

As shown in fig. 1, the grammar consists of the MAIN

PROGRAM together with three sets of "background data", viz.

UNITMATRIX, RULEMATRIX and RULEINDEX. The main program operates

with integers corresponding to the different vowels, consonants

and boundaries. Thus we need a subroutine which translates

a string of IPA-symbols (the input to the grammar) into the

corresponding string of integers, and anotheF subroutine which

translates a string of integers into the corresponding string

of IPA-symbols (the output from the grammar), see section 2.5

below.

1) We are indebted to the teachers at the summer school, Martin
Kay and Richard Rubinstein, for much good advice during the

initial stage of the project. The programming language used is
UNIVAC ALGOL, and the program has been run at the regional com
puter center of the university of Copenhagen (RECKU).

.
0 z
.µ
·r-1
s.::
0

IPA 'IPA.

I + t
1 Unit Unit
I No., No. I . '

L - __ J

MAIN

PROGRAM

UNIT MATRIX

Feature No.
1 I 2 I 3 I

1 1 1 -1

2 1 -1 0

3 1 1 1

I
I • I

Fi9:. 1

218

.
0 z
(l)

r--1
:,::,
~

7

8

RULE INDEX

d

5 7 1 -1

a: left side begins line No.
b: right " " " "
c: obligatory/optional rule
d: rule sensitive to

syllable boundaries

RULE MATRIX

Feature No.

I
I 1 I 2 I

3
1

4
I

5

.
5 0 1 0 -1 0 0 z

(1) 6 0 1 Q 0 -1
s.::

·r-1 7· 0 0 0 0 -1 H .
8 o. 0 0 0 0

- -.µ e - -·r-1 tJ"'I r--1 s::: ·r-1
s::: (1) ~ 0 0
~ U) U) U) > - -

219

UNITMATRIX is a two-dimensional integer array, the

dimensions being unit-no. (i.e. the integers corresponding to

every vowel, consonant, and boundary) and feature-no. (i.e. the

integers corresponding to every distinctive feature, like

"segment", "syllabic", "sonorant", etc.). Binary features may

hav~ the coefficients 1 or -1, a multivalued feature like

"height" may have the features 1, 2, 3, etc. The coefficient

0 (zero} is used in cases where the feature is phonetically

undefined (e.g. the feature· "lateral" is undefined for a

boundary, i.e. for a unit which has the coefficient -1 for the

feature "segment") . The matrix is thus not redundancy-free·,

but contains only phonetically meaningful specificationse

RULEMATRIX is a two-dimensional integer array, the

dimensions being line-no.and feature-no. To each rule corre

sponds a number of consecutive lines in RUL~MATRIX (e.g. to rule

no. 7 correspond lines no.5-8, see- fig. 1). Each line number

refers to a unit (i.e. a segment oi a boundary in the phonologic

al sense) in the left side o~ right side of a· rule (see section

2.2 below}. Only the feature coefficients which are crucial

for the correct application of a rul~, i.e. (by and large) the

features which are mentioned in the standard notation of a

phonological rule (see below), are specified in RULEMATRIX, all

other coefficients are O (zero).

RULEINDEX is a two-dimensional integer array with rule-no.

as one of its dimensions. The first number of the other dimen

sion indicates the line number (in RULEMATRIX) where the left

side of the rule begins, the second number indicates the line

number where its .right side begins, the third number indicates

whether the rule is obligatory or optional, and the fourth and

(for the moment) last number indicates whether the rule is

sensitive to syllable boundaries or not. Thus RULEINDEX con

tains two types of information: it governs the data of RULEMATRIX

220

(this has the consequence that the feature specifications of a

rule can be stored everywhere in RULEMATRIX}, ~nd it contains

all information which considers the rule as a whole, i.e. i.ts

domain and other general conditions for its application.

2.2 The format of phonological rules

(i) is the traditional notation of a phonological re

write-rule which devoices obstruents before voiceless segments:

(i) [-son] ~ [-voi] / __ [-voi]

(i) can be rendered in the format of a phonological transforma

tion instead, viz. as (ii):

(ii) [-son] [-voi] ==;> [-voi] 2

l· 2 1

(i.e. if an input string consists of a [-son]-segment (1) fol

lowed by a [~voi]-segment (2), then the non-sonorant, i.e.

obstruent (viz. 1), gets the specification [-voi], while the

.voiceless segment (viz. 2) remains unchanged). This is the

format we use for storing phonological rules in RULEMATRIX.

Each unit of the rule (i.e. segment or boundary in the

phonological sense) is represented by a line in RULEMATRIX,

and we impose the restricti_on that there must be the same

number of lines (in RULEMATRIX) corresponding to the two sides

of a rule. This restriction does not mean, however, that we

cannot handle deletion, since we use the feature "unit" as a

common denominator for segments ([+unit, +segment]) and bounda

ries ([.+unit, -segment].), in agreement with a suggestion of

SPE (p. 359, footnote 14). Thus [-unit] means a blank (0 in

the rule algebra), which in UNITMATRIX is defined as -1 "unit",

all other features being unspecified, i.e. zero. A deletion

rule is a rule whereby a unit of the left side changes into

a blank.

221

Let us now look closer at rule (iil, and let it be rule

no.7 in the ordering. It is stored in RULEMATRIX in four

consecutive lines (i.e. lines no.5-8 in fig. 1). The two

latter lines, which correspond to the right side of (ii), only

contain the specification that segment no. 1 of the rule gets

the coefficient -1 for the feature "voiced", all other co

efficients are unspecified (i.e. zero). The two first lines

contain the specifications -1 "sonorant" and -1 "voiced", of

course, ·but also +l "segment" for both units (otherwise a

boundary (which is unspecified as to the features "sonorant"

and "voiced") in the input form to ·the rule would, incorrectly,

be compatible with any of the segments of the left side of the

rule (ii); any blank in the input form to a rule must be ignored,

see the following section}.

2.3 The application of an obligatory rule to a form

Let us see what happens when we apply rule (ii), which is

rule no.7 in the ordering, to a form. The output form from

rule no. 6 is a string of integers where each integer is a unit

no. First of all, RULEINDEX is consulted to see whether the

rule is optional or obligatory. If it were optional, we would

go to the next rule in the ordering (see further section 2.4

below), but let us say that it is obligatory. RULEINDEX also

indicates whether the rule in question is sensitive to.the

occurrence of syllable boundaries. If this is not the case,

.the syllable boundaries (which have been inserted by earlier

rules) of the input form to the rule are ignored when the

program determines whether the rule can be applied (see beiow).

The program must also ignore any blank which the input form to

a ru~e may contain (resulting from the application_of earlier

deletion rules); otherwise deletion rules could never create

new environments for later rules to apply in.

222

Furthermore, RULEINDEX indicates at which line-no.the

left and the right side of the rule begins, and because of the

restriction that the two sides of the rule must be stored in

the same number of lines in RULEMATRIX, and because all lines

of a rule are adjacent, we know the position of each unit of

the rule in RULEMATRIX. The program now examines whether any·

substring of the input form is compatible with the structural

description (i.e., the _left side) of the rule. This comparison

is carried out between two ordered sets of feature numbers at

a time, viz-. line-no. (in RULEMATRIX) and unit-no. (in UNI.TMATRIX).

There is compatibility between a line of the left side of the

rule and a given unit in the input form of the rule if it is

-true for all features either that the coefficients of th~

feature are the same, or that one of them is zero. (It is this

function of zero which guarantees that zero can never be used

improperly as a third value of a binary feature, or a n+l th

value of a n-ary feature.) If there is compatibility between

a substring of the input form to the rule and all lines o·f

the left side of the rule, then there is "full compatibility".

If no substring of -the input form has full compatibility

with respect to the structural description of the rule, then

rule no.7 is quitted and we turn to rule no.8. But if there

is full compatibility, then the units of the substring in

question.of the input form get the feature coefficients which

are specified in the right side of the rule. All feature co

efficients which are unspecified in the right side of the rule

are kept unchanged in the input form. The program then con

sults UNITMATRIX in order to find the unit-no.corresponding to

each of the units which have been changed by the rule (we im

pose the restriction that all derived units must be defined in

UNITMATRIX). An ordered set of feature coefficients is defined

as a certain unit-no.in UNITMATRIX if it is true for any feature

either that the coefficients of the feature are identical or

223

that one of them is zero, (Thus a unit which has been deleted,

i.e. which has got the specification [-unit] by the rule, will

be defined as zero (a blank) in UNITMATRIX since blank in the

matrix is unspecified for all other features than [-unit].)

The output form of the rule is thus a string of unit numbers,

and this output form is then the input form to the following

rule in the ordering~ i.e. rule. no.8.

2.4 Optional rules

That a ruie is optional means that it need not be applied

even though its structural description is satisfied. Two

alternative ways of handling optional rules within a progr~m

like ours present themselves: either we could indicate some

styl~stic value together with the input form to the grammar,

and then specify the stylistic conditions for the application

of each optional rule; or we could follow all possible paths

through the derivation .. We have chosen this latter procedure

since it cannot destroy useful information, in contra-distinc

tion to the former alternative (see below).

We adhere to the ·following strong working hypothesis on

optional rules: all optional phonological rules are stylistic,

i.e., the non-vacuous application (see below} and·the non

application of an optional rule give output forms which differ

as to level of style (formality, or the like),·. and, furthermore,

the non-vacuous application of an optional phonological rule
gives an output form which belongs.to a "lower" (less formal,

etc.} level of style than the non-application.

Each time a form is input to an optional rule, the rule

is first skipped, and the form is ~nput to the following rule

(if this is also an optional rule, then this rule is skipped

too, etc.)". When such a path of derivation bas been followed

through, then the program returns to the last optional rule and

this time tries to apply it, and so forth. If the grammar

224

contains n optional rules, each input form will thus follow

2n different paths of derivation. However, most of these will

only differ in uninteresting ways {e.g. when the distinction

is one between skipping an optional .rule or trying to apply it

in cases where its structural.description ·is not met, i.e. is

not satisfied for any substring).

The interesting case occurs when the structural descrip

tion of an optional rule is met and its application will be

non-vacuous {i.e. when the input form: and the output form of

the rule are distinct, i.e. do not consist of the same string

of unit numbers). In such cases the program ~dds the designa

tion!! {for "lavsprog", i.e. "low style") to the output form

from the rule if it is applied, and H .{ for "h~j sprog", i.e.

"high style"} if it is not applied. The printout contains

(among other things, see below) the information Lor H con-

cerning the application or non-application of each optional

rule whose application to the input form in question would be

non-vacuous.

This stylistic information concerning·the output opens

up exciting perspectives, in addition to the fact .that it could

falsify our hypothesis on optional rules: Are some or all

output forms with both!! and Hin their derivational history

impossible s_ince they are stylistically "incompatible" {e.g.

is a form .like [le:v] of leve impossible since shwa-assimilation
I --

iS low style, and the keeping of the postvocalic [v] (instead

·of[~]) is high style, compare the normal high style and low

style pronunciations [le: va, le {:) o J ,· where [o J in [le { :·) o] is

derived via [~a]}? Can the optional rules be arranged into a

"stylistic hierarchy" so that the .!!-application of a certain

rule excludes the H-{non-)application of another rule but not

inversely? Does a greater number of L-applications correspond

to a more markedly low style pronunciation (as judged by native

speakers of the language)? And so on.

225

2.5 Input and output

The dotted box in fig .. 1 indicates the subroutines which

translate from IPA-notation (in the input to the grammar·) into

unit-no~, and from unit-n~ into IPA-notation. Thus· every print~

out will be in IPA-notation.

The printout corresponding to a given input form to the

. grammar will consist of this input form together with all the

different output forms, and selected information on the deriva

tional history of any path through the grammar. This deriva

tional history consists of all ·intermediate forms which differ

in interesting ways (see the preceding section), together with

a letter for each rule in relation to each form:~, g (on these

two letters, see the preceding section), O (meaning "the rule

has not been skipped, but there was not full compatibility"·) ,

V (meaning "vacuous application", i.e. "there was full compati

bility, but the input form equals the output form"),~ (meaning

"non-vacuous application of· an·obligatory rule", i.e. "there

was full compatibility, and the input form was distinct from

the output form";~ for obligatory rules thus corresponds to

~ for optional rules).

3. Concluding remarks

The preliminary nature of this.report has already been

emphasized. Our first task will be to f il•l a lot of relevant

data into UNITMATRIX, RULEMATRIX and RULEINDEX, -and to test the

grammar with as many and as varied input data as possible.

This program ought to be coordinated.with Peter Holtse's

work on speech ~ynthesis by rule of Standard Danish (see his

report in the present volume of ARIPUC). The output forms of

our program should be used as input forms to the rule synthesis

226

program, and at present we (i.e. PH, HB and KKl are trying to

make this possible. The perspective of this cooperation seems

very interesting to us: we may then get an "external ·test" of

the relevance of our phonetic representations, and the border

line between the ·two programs may turn out·to give substance to

a distinction between "phonological rules" (contained within

the program reported here) and purely·"phon~tic rule~" (con

tained within the rule synthesis program).

